Những câu hỏi liên quan
PB
Xem chi tiết
CT
19 tháng 2 2019 lúc 7:17

Lời giải: Kí hiệu "<=" - nhỏ hơn hoặc bằng , '>=": lớn hơn hoặc bằng, "=>": suy ra Giả sử a >= b suy ra 1/b >= 1/ a suy ra 1/a + 1/b<= 2/b hay 1/4<=2/b => 1/8 <= 1/b. Vậy b <= 8 Mà 1/b <1/4 nên b>4 Vậy b = 5;6;7;8 Thử các trường hợp ta sẽ ra các đáp số (6;12), (8;8) và (5;20)

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 3 2018 lúc 8:19

A.B = A + B

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇔ 20 = 5(2m – 1) + 4(2m + 1)

⇔ 20 = 10m – 5 + 8m + 4

⇔ 18m = 21

⇔ m = 7/6 (thỏa)

Vậy m = 7/6 thì A.B = A + B

Bình luận (0)
BT
Xem chi tiết
NV
7 tháng 1 2021 lúc 19:45

Giải

a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)

<=>10(2m-1)+ 12(2m+1) =0

<=> 44m +2 =0 

<=> m=-1/22

b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)

<=> 20 = 5(2m -1) + 4(2m+1) 

<=> 20 = 18m - 1

<=> m=7/6

Bình luận (0)
Xem chi tiết
EV
11 tháng 9 2019 lúc 17:51

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Bình luận (0)
KS
11 tháng 9 2019 lúc 18:12

Ta có :

 \(A=\frac{5}{2m+1}\)  và \(B=\frac{4}{2m-1}\)           \(\left(ĐKXĐ:\ne\pm\frac{1}{2}\right)\)

a ) \(2A+3B=0\Rightarrow2.\frac{5}{2m+1}+3.\frac{4}{2m-1}=0\)

\(\Leftrightarrow\frac{10}{2m+1}+\frac{12}{2m-1}=0\Leftrightarrow\frac{10.\left(2m-1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)

\(\Leftrightarrow10\left(2m-1\right)+12\left(2m+1\right)=0\)

\(\Leftrightarrow20m-10+24m+12=0\)

\(\Leftrightarrow44m+2=0\)

\(\Leftrightarrow m=-\frac{1}{22}\left(t/m\right)\)

Vậy \(m=-\frac{1}{22}\) thì \(2A+3B=0\)

Chúc bạn học tốt !!!

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2018 lúc 13:25


⇔ 10(2m – 1) + 12(2m + 1) = 0

⇔ 20m – 10 + 24m + 12 = 0

⇔ 44m + 2 = 0

⇔ m = - 1/22 (thỏa)

Vậy m = - 1/22 thì 2A + 3B = 0.

Bình luận (0)
TN
Xem chi tiết
PH
Xem chi tiết
DH
8 tháng 2 2023 lúc 8:48

Từ giả thiết \(1\le a\le2\) =>  ( a - 1).(a - 2) \(\le\) 0 =>\(a^2-3a+2\le0\)

Từ giả thiết \(1\le b\le2\) => (b - 1)( b - 2) \(\le\) 0 => \(a^2-3b+2\le0\)

Vì vậy ta có P:

\(=\left[a^2+b^2-3\left(a+b\right)+4\right]-\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)^2-\left(\dfrac{\sqrt{b}}{2}-\dfrac{1}{\sqrt{b}}\right)^2-3\le-3\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=\dfrac{1}{\sqrt{q}}\\\dfrac{\sqrt{b}}{2}=\dfrac{1}{\sqrt{b}}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy a =1 ; b = 2 là giá trị lớn nhất của biểu thức

Bình luận (0)
PB
Xem chi tiết
CT
21 tháng 9 2019 lúc 16:38

Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

a 2 + b 2 ≥ 2 a b ,   b 2 + c 2 ≥ 2 b c ,   c 2 + a 2 ≥ 2 c a  

Do đó:  2 a 2 + b 2 + c 2 ≥ 2 ( a b + b c + c a ) = 2.9 = 18 ⇒ 2 P ≥ 18 ⇒ P ≥ 9

Dấu bằng xảy ra khi  a = b = c = 3 . Vậy MinP= 9 khi  a = b = c = 3

Vì  a ,   b ,   c   ≥ 1 , nên  ( a − 1 ) ( b − 1 ) ≥ 0 ⇔ a b − a − b + 1 ≥ 0 ⇔ a b + 1 ≥ a + b

Tương tự ta có  b c + 1 ≥ b + c ,   c a + 1 ≥ c + a  

Do đó  a b + b c + c a + 3 ≥ 2 ( a + b + c ) ⇔ a + b + c ≤ 9 + 3 2 = 6

Mà   P = a 2 + b 2 + c 2 = a + b + c 2 − 2 a b + b c + c a = a + b + c 2 – 18

⇒ P ≤ 36 − 18 = 18 . Dấu bằng xảy ra khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Vậy maxP= 18 khi :  a = 4 ; b = c = 1 b = 4 ; a = c = 1 c = 4 ; a = b = 1

Bình luận (0)
NV
Xem chi tiết