Tính giá trị biểu thức:
a) M = (a - 2b)( a 2 + 2ab + 4 b 2 ) + ( 2 b - a ) 3 tại a = -1; b = 2;
b) N = (2xy - 2)(2xy + 3) - ( 1 - 2 xy ) 2 tại x = 1 2 ; y = -1.
Cho a = 5 + b. Tính giá trị của biểu thức M = a2+b2+2a-2b-2ab+65
\(M=a^2+b^2+2a-2b-2ab+65\)
\(=\left(a^2-2ab+b^2\right)+2\left(a-b\right)+65\)
\(=\left(a-b\right)^2+2\left(a-b\right)+65\)
Ta có: \(a=5+b\Leftrightarrow a-b=5\)
\(\Rightarrow M=5^2+2.5+65=25+10+65=100\)
Vậy \(M=100.\)
Cho 2 biểu thức:
A= x2-x+5 và B= (x-1)(x+2)-x(x-2)-3x
a) Tính giá trị biểu thức A khi x =2
b) Chứng minh B= -2 với mọi giá trị của biến x
a,A = x2 - x + 5 ,khi x = 2
= 22 - 2 + 5
= 7.
a: Thay x=2 vào A, ta được:
\(A=2^2-2+5=4+5-2=7\)
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
\(a + b = -3\)
\(ab = 2\)
Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).
Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:
\(\frac{2}{b} + b = -3\)
\(2 + b^2 = -3b\)
\(b^2 + 3b + 2 = 0\)
\((b + 1)(b + 2) = 0\)
\(b = -1\) hoặc \(b = -2\).
Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).
Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\).
Cho các đa thức:
A(x) = 2x^5 – 4x^3 + x^2 – 2x + 2
B(x) = x^5 – 2x^4 + x^2 – 5x + 3
C(x) = x^4 + 4x^3 + 3x^2 – 8x +4 3/16
1, Tính M(x) = A(x) – 2B(x) + C(x)
2, Tính giá trị của M(x) khi x = -√0,25
3, Có giá trị nào của x để M(x) = 0 không ?
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
Câu 1. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 2. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 3. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 4. Tìm x, biết:
a) 16x2-(4x-5)2=15 b) (2x+1)(1-2x)+(1-2x)2=18
c) (x-5)2-x(x-4)=9 d) (x-5)2+(x-4)(1-x)=0
Tách ra mỗi câu một lần.
Dài quá không ai làm đâu.
Nhìn nản lắm.
Câu 3:
a: \(49^2=2401\)
b: \(51^2=2601\)
c: \(99\cdot100=9900\)
tính giá trị biểu thức:
a) A=-34x + 34y biết x-y=2
b) B=ax-ay+bx-by biết a+b=-7 và x-y=-1
c)C= m2.(m2-n).(m3-n6).(m+n2) với m=-16,n=-4
a) Ta có: \(A=-34x+34y\)
\(=-34\left(x-y\right)\)
Thay x-y=2 vào biểu thức A=-34(x-y), ta được:
\(A=-34\cdot2=-68\)
Vậy: Khi x-y=2 thì A=68
b) Ta có: \(B=ax-ay+bx-by\)
\(=a\left(x-y\right)+b\left(x-y\right)\)
\(=\left(x-y\right)\left(a+b\right)\)
Thay a+b=-7 và x-y=-1 vào biểu thức \(B=\left(x-y\right)\left(a+b\right)\), ta được:
\(B=-1\cdot\left(-7\right)=7\)
Vậy: Khi a+b=-7 và x-y=-1 thì B=7
Tìm giá trị nhỏ nhất của biểu thức:
a)A=x^2 + 4x - 2
b)B=2x^2 - 4x + 3
c)C=x^2 + y^2 - 4x + 2y + 5
a) A = x2 + 4x - 2 = x2 + 4x + 4 - 6 = (x + 2)2 - 6
(x + 2)2 ≥ 0 => A ≥ -6 => GTNN của A là -6, xảy ra khi x = 2
`a)A=x^2+4x-2`
`A=x^2+4x+4-6=(x+2)^2-6`
Vì `(x+2)^2 >= 0 AA x`
`<=>(x+2)^2-6 >= -6 AA x`
Hay `A >= -6 AA x`
Dấu "`=`" xảy ra`<=>(x+2)^2=0<=>x=-2`
Vậy `GTN N` của `A` là `-6` khi `x=-2`
________________________________________________
`b)B=2x^2-4x+3`
`B=2(x^2-2x+3/2)`
`B=2(x^2-2x+1)+1=2(x-1)^2+1`
Vì `2(x-1)^2 >= 0 AA x`
`<=>2(x-1)^2+1 >= 1 AA x`
Hay `B >= 1 AA x`
Dấu "`=`" xảy ra `<=>(x-1)^2=0<=>x=1`
Vậy `GTN N` của `B` là `1` khi `x=1`
__________________________________________________
`c)C=x^2+y^2-4x+2y+5`
`C=x^2-4x+4+y^2+2y+1`
`C=(x-2)^2+(y+1)^2`
Vì `(x-2)^2 >= 0 AA x` và `(y+1)^2 >= 0 AA y`
`=>(x-2)^2+(y+1)^2 >= 0 AA x,y`
Hay `C >= 0 AA x,y`
Dấu "`=`" xảy ra`<=>{((x-2)^2=0),((y+1)^2=0):}`
`<=>{(x=2),(y=-1):}`
Vậy `GTN N` của `C` là `0` khi `x=2`,y=-1
cho a,b,c khác 0 thỏa mãn 2ab=c^2,ac=4b^2.Tính giá trị biểu thức 5a+4b+3c/3a+2b+c
Cho 2 biểu thức:
A= \(\dfrac{x+2}{x+5}\)+ \(\dfrac{-5x-1}{x^2+6x+5}\)- \(\dfrac{1}{1+x}\) và B= \(\dfrac{-10}{x-4}\) với x ≠-5, x ≠-1, x≠ 4
a) Tính giá trị của biểu thức B tại x= 2
b) Rút gọn biểu thức A
c) Tìm giá trị nguyên của x để P= A.B đạt giá trị nguyên
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)