Những câu hỏi liên quan
LK
Xem chi tiết
PH
Xem chi tiết
1M
Xem chi tiết
H24
25 tháng 12 2021 lúc 21:35

\(a^4+b^4\\ =\left(a^4+2a^2b^2+b^4\right)-2a^2b^2\\ =\left(a^2+b^2\right)^2-2a^2b^2\\ =\left[\left(a^2+2ab+b^2\right)-2ab\right]^2-2a^2b^2\\ =\left[\left(a+b\right)^2-2ab\right]^2-2a^2b^2\\ =\left(a+b\right)^4-4ab\left(a+b\right)^2+4a^2b^2-2a^2b^2\\ =\left(-4\right)^4-4\left(-12\right)\left(-4\right)^2+2a^2b^2\\ =256+768+2\left(-12\right)^2\\ =256+768+288\\ =1312\)

Bình luận (0)
NT
Xem chi tiết
NC
17 tháng 3 2020 lúc 20:34

Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
TT
11 tháng 9 2020 lúc 22:42

Ta có : \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)

\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)

Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Khi đó biểu thức :

\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
NT
29 tháng 10 2019 lúc 17:05

\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)

\(\Rightarrow a-b=-1\)

\(\Rightarrow A=\left(-1\right)^5=?\)

\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)

Bình luận (0)
 Khách vãng lai đã xóa
1M
Xem chi tiết
NT
25 tháng 12 2021 lúc 21:26

\(A=16-2\cdot\left(-12\right)=40\)

Bình luận (0)
H24
25 tháng 12 2021 lúc 21:27

\(a^2+b^2=\left(a^2+2ab+b^2\right)-2ab=\left(a+b\right)^2-2ab=\left(-4\right)^2-2\left(-12\right)=16+24=40\)

Bình luận (0)
HH
Xem chi tiết
NC
17 tháng 3 2020 lúc 20:34

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)

\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)

\(=2.6^2-6.12=0\)

Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
MT
Xem chi tiết
NT
25 tháng 3 2021 lúc 22:23

a) \(A+B=-12x^2y^4-6x^2y^4=-18x^2y^4\)

\(A+C=-12x^2y^4+9x^2y^4=-3x^2y^4\)

\(B+C=-6x^2y^4+9x^2y^4=3x^2y^4\)

Bình luận (0)
CN
26 tháng 3 2021 lúc 15:26

a) A+B=−12x2y4−6x2y4=−18x2y4A+B=−12x2y4−6x2y4=−18x2y4

A+C=−12x2y4+9x2y4=−3x2y4A+C=−12x2y4+9x2y4=−3x2y4

B+C=−6x2y4+9x2y4=3x2y

 

Bình luận (0)