Viết bảy hằng đẳng thức đáng nhớ.
hãy viết bảy hằng đẳng thức đáng nhớ?
{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
Bình phương của một hiệu:{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
Hiệu hai bình phương:{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
Lập phương của một tổng:{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
Lập phương của một hiệu:{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
Tổng hai lập phương:{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
Hiệu hai lập phương:{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}
{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}
Bình phương của một hiệu:{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}
Hiệu hai bình phương:{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}
Lập phương của một tổng:{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}
Lập phương của một hiệu:{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}
Tổng hai lập phương:{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}
Hiệu hai lập phương:Viết 5 hằng đẳng thức đáng nhớ
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(\left(a+b\right)^2=a^2+ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Viết bẩy hằng đẳng thức đáng nhớ ?
Ta có bảy hằng đẳng thức đáng nhớ:
1. (A + B)2 = A2 + 2AB + B2
2. (A – B)2 = A2 – 2AB + B2
3. A2 – B2 = (A + B)(A – B)
4. (A + B)3 = A3 + 3A2B + 3AB2 + B3
5. (A – B)3 = A3 – 3A2B + 3AB2 – B3
6. A3 + B3 = (A + B)(A2 – AB + B2)
7. A3 – B3 = (A – B)(A2 + AB + B2)
\(\left(A-B\right)^2=A^2-2AB-B^2\)
\(\left(A+B\right)^2=A^2+2AB+B^2\)
\(A^2-B^2=\left(A+B\right)\left(A-B\right)\)
\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)
\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)
\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)
\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)
Viết 7 hằng đẳng thức đáng nhớ? cho vd
vào chửi nó giúp mình với : https://olm.vn/thanhvien/thiend2k4
CHUYÊN ĐỀ: NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
A. Lý thuyết1. Bình phương của một tổng- Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai. (A + B)2 = A2 + 2AB + B2 |
Ví dụ:
2. Bình phương của một hiệu- Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai. (A - B)2 = A2 - 2AB + B2 |
Ví dụ:
3. Hiệu hai bình phương- Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó. A2 – B2 = (A + B)(A – B) |
Ví dụ:
4. Lập phương của một tổng- Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai. (A + B)3 = A3 + 3A2B + 3AB2 + B3 |
Vú dụ:
5. Lập phương của một hiệu- Lập phương của một hiệu = lập phương số thứ nhất - 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai - lập phương số thứ hai. (A - B)3 = A3 - 3A2B + 3AB2 - B3 |
Ví dụ:
6. Tổng hai lập phương- Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu. A3 + B3 = (A + B)(A2 – AB + B2) |
Ví dụ:
7. Hiệu hai lập phương- Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng. A3 – B3 = (A – B)(A2 + AB + B2) |
Phần bài tập ở đây nhé ( Tham khảo )
https://toanh7.com/ly-t huyet-va-bai-tap-ve-7-hang-dang-thuc-dang-nho-a10901.html
Viết những hằng đẳng thức đáng nhớ GIÚP MK NHA (VIẾT HẾT RA NHA )
nhiều lắm nhớ sao được có hơn 20 cái hằng đẳng thức mà tự tra google đi
uaruar, tui tưởng có 11 cái hàng đẳng thức nhưng hk lớp 9 chắc chỉ hok 7 thoy nhỉ, đâu ra 20?
Ai viết cho mình quy tắc 7 hằng đẳng thức đáng nhớ với
1. ( A + B ) = A^2 + 2.A.B + B^2
2. ( A - B ) = A^2 - 2.A.B + B^2
3. A^2 - B^2 = ( A + B ).(A - B )
4. ( A + B )^3 = A^3 + 3A^2B + 3AB^2 + B^3
5. ( A - B )^3 = A^3 - 3A^2B + 3AB^2 - B^3
6. A^3 + B^3 = ( A + B ).( A^2 - AB + B^2 )
7. A^3 - B^3 = ( A - B ).( A^2 + AB + B^2 )
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
\(a^2-b^2=\left(a-b\right).\left(a+b\right)\)
\(a^3-b^3=\left(a-b\right).\left(a^2+ab+b^2\right)\)
\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
Câu hỏi: Viết bảy hằng đẳng thức đáng nhớ.
1. Bình phương của 1 tổng
( a + b )2 = a2 + 2ab + b2
2. Bình phương của 1 hiệu
( a - b )2 = a2 - 2ab + b2
3. Hiệu 2 bình phương
a2 - b2 = ( a + b ) . ( a - b )
4. Lập phương của 1 tổng
( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3
5. Lập phương của 1 hiệu
( a3 - b3 ) = a3 - 3a2b + 3ab2 - b3
6. Tổng hai lập phương
a3 + b3 = ( a + b ).(a2 - ab + b2 )
7. Hiệu hai lập phương
a3 - b3 = ( a - b ).(a2 + ab + b2 )
cho mk 7 hằng đẳng thức đáng nhớ và hằng đẳng thức mở đii