Những câu hỏi liên quan
HA
Xem chi tiết
DD
9 tháng 7 2017 lúc 9:09
Bình phương của một tổng:

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

Bình phương của một hiệu:

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

Hiệu hai bình phương:

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

Lập phương của một tổng:

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

Lập phương của một hiệu:

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

Tổng hai lập phương:

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

Hiệu hai lập phương:

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Bình luận (0)
PL
9 tháng 7 2017 lúc 9:08
Bình phương của một tổng:

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

Bình phương của một hiệu:

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

Hiệu hai bình phương:

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

Lập phương của một tổng:

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

Lập phương của một hiệu:

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

Tổng hai lập phương:

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

Hiệu hai lập phương:

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Bình luận (0)
PT
9 tháng 7 2017 lúc 9:10
Bình phương của một tổng:

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

Bình phương của một hiệu:

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

Hiệu hai bình phương:

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

Lập phương của một tổng:

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

Lập phương của một hiệu:

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

Tổng hai lập phương:

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

Hiệu hai lập phương:{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}
Bình luận (0)
AN
Xem chi tiết
H24
11 tháng 1 2022 lúc 15:10

Có 7 mà

Bình luận (2)
NT
11 tháng 1 2022 lúc 15:13

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

Bình luận (1)
H24
11 tháng 1 2022 lúc 15:15

\(\left(a+b\right)^2=a^2+ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

Bình luận (2)
SK
Xem chi tiết
LA
20 tháng 4 2017 lúc 22:41

Ta có bảy hằng đẳng thức đáng nhớ:

1. (A + B)2 = A2 + 2AB + B2

2. (A – B)2 = A2 – 2AB + B2

3. A2 – B2 = (A + B)(A – B)

4. (A + B)3 = A3 + 3A2B + 3AB2 + B3

5. (A – B)3 = A3 – 3A2B + 3AB2 – B3

6. A3 + B3 = (A + B)(A2 – AB + B2)

7. A3 – B3 = (A – B)(A2 + AB + B2)



Bình luận (0)
NL
21 tháng 4 2017 lúc 6:07

\(\left(A-B\right)^2=A^2-2AB-B^2\)

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(A^2-B^2=\left(A+B\right)\left(A-B\right)\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

Bình luận (0)
H24
Xem chi tiết
H24
21 tháng 12 2019 lúc 10:33

vào chửi nó giúp mình với : https://olm.vn/thanhvien/thiend2k4

Bình luận (0)
 Khách vãng lai đã xóa
EC
21 tháng 12 2019 lúc 10:47

CHUYÊN ĐỀ: NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ

A.   Lý thuyết1.     Bình phương của một tổng

-         Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.

(A + B)2 = A2 + 2AB + B2

Ví dụ:  

2.     Bình phương của một hiệu

-         Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.

               (A - B)2 = A2 - 2AB + B2

Ví dụ:  

3.     Hiệu hai bình phương

-         Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.

A2 – B2 = (A + B)(A – B)

Ví dụ:  

4.     Lập phương của một tổng

-         Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.

(A + B)3 = A3 + 3A2B + 3AB2 + B3

Vú dụ:  

5.     Lập phương của một hiệu

-         Lập phương của một hiệu = lập phương số thứ nhất - 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai - lập phương số thứ hai.

(A - B)3 = A3 - 3A2B + 3AB2 - B3

Ví dụ:

6.     Tổng hai lập phương

-         Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu.

A3 + B = (A + B)(A– AB + B2)

Ví dụ:  

7.     Hiệu hai lập phương

-         Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng.

A3 – B3 = (A – B)(A2 + AB + B2)

Bình luận (0)
 Khách vãng lai đã xóa
EC
21 tháng 12 2019 lúc 10:48

Phần bài tập ở đây nhé ( Tham khảo )

https://toanh7.com/ly-t huyet-va-bai-tap-ve-7-hang-dang-thuc-dang-nho-a10901.html

Bình luận (0)
 Khách vãng lai đã xóa
KL
Xem chi tiết
CT
21 tháng 1 2018 lúc 15:27

hỏi chị google RA LIỀN 

Bình luận (0)
PD
21 tháng 1 2018 lúc 15:46

nhiều lắm nhớ sao được có hơn 20 cái hằng đẳng thức mà tự tra google đi

Bình luận (0)
KN
9 tháng 9 2018 lúc 20:52

uaruar, tui tưởng có 11 cái hàng đẳng thức nhưng hk lớp 9 chắc chỉ hok 7 thoy nhỉ, đâu ra 20?

Bình luận (0)
MA
Xem chi tiết
NL
28 tháng 6 2015 lúc 15:59

1. ( A + B ) = A^2 + 2.A.B + B^2

2. ( A - B ) = A^2 - 2.A.B + B^2

3.  A^2 - B^2 = ( A + B ).(A - B )

4. ( A + B )^3 = A^3 + 3A^2B + 3AB^2 + B^3

5. ( A - B )^3 = A^3 - 3A^2B + 3AB^2 - B^3

6. A^3 + B^3 = ( A + B ).( A^2 - AB + B^2 ) 

7. A^3 - B^3 = ( A - B ).( A^2 + AB + B^2 )

Bình luận (0)
CP
28 tháng 6 2015 lúc 8:46

Có trong 1 số ít quyển vở mỏng

Bình luận (0)
H24
28 tháng 4 2019 lúc 14:07

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(a^2-b^2=\left(a-b\right).\left(a+b\right)\)

\(a^3-b^3=\left(a-b\right).\left(a^2+ab+b^2\right)\)

\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

Bình luận (0)
LH
Xem chi tiết
NH
15 tháng 11 2018 lúc 20:21

Image result for bảy hằng đẳng thức đáng nhớ.

Bình luận (0)
CD
15 tháng 11 2018 lúc 20:27

1. Bình phương của 1 tổng

( a + b )2 = a2 + 2ab + b2

2. Bình phương của 1 hiệu

( a - b )2 = a2 - 2ab + b2

3. Hiệu 2 bình phương

a2 - b2 = ( a + b ) . ( a - b )

4. Lập phương của 1 tổng

( a3 + b3 ) = a3 + 3a2b + 3ab2 + b3

5. Lập phương của 1 hiệu

( a3 - b3 ) = a3 - 3a2b + 3ab2 - b3

6. Tổng hai lập phương

a3 + b3 = ( a + b ).(a2 - ab + b2 )

7. Hiệu hai lập phương

a3 - b3 = ( a - b ).(a2 + ab + b2 )

Bình luận (0)
NT
Xem chi tiết