Những câu hỏi liên quan
VA
Xem chi tiết
TP
Xem chi tiết
NC
Xem chi tiết
DH
Xem chi tiết
YN
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
MA
Xem chi tiết
AH
6 tháng 2 2024 lúc 15:01

Lời giải:
Đặt $n^2-n+13=t^2$ với $t$ là số tự nhiên

$\Rightarrow 4n^2-4n+52=4t^2$

$\Leftrightarrow (4n^2-4n+1)+51=4t^2$

$\Leftrightarrow (2n-1)^2+51=(2t)^2$

$\Leftrightarrow 51=(2t)^2-(2n-1)^2=(2t-2n+1)(2t+2n-1)$

Đến đây là dạng phương trình tích cơ bản rồi. Bạn lập bảng xét giá trị để tìm ra $n$ thôi.

Bình luận (0)
ND
Xem chi tiết
YS
9 tháng 2 2016 lúc 14:51

đặt s(n) = 1! + 2! + ... + n! 
s(1) = 1 và s(3) = 9 là số chính phương. 
s(2) = 3 và s(4) = 33 không là số chính phương. 
Với n ≥ 5 có n! chia hết cho 10 - do trong tích có 2 thừa số là 2 và 5 - nên n! tận cùng bằng 0 
Vậy với n ≥ 5 có s(n) = s(4) + 5! + ... + n! tận cùng bằng 3. Do số chính phương không tận cùng bằng 3 (chỉ tận cùng bằng 0, 1, 4, 5, 6, 9) nên với n ≥ 5 có s(n) không là số chính phương. 
Vậy chỉ với n = 1 và n = 3 tổng đã cho là số chính phương.

Nguồn: yahoo

Bình luận (0)
B1
9 tháng 2 2016 lúc 14:57

n=1 hoac n=3

Bình luận (0)