Nêu ví dụ về tập hợp.
Dùng kí hiệu ∈ và ∉ để viết các mệnh đề sau.
a)3 là một số nguyên;
b)√2 không phải là số hữu tỉ
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số nguyên bằng bình phương của nó ;
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau:
Có một số nguyên không chia hết cho chính nó
Dùng các kí hiệu để viết lại mệnh đề sau và viết mệnh đề phủ định của nó: Q: “Với mọi số thực thì bình phương của nó là một số không âm”
A. Q: ∀ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
B. Q: ∃ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là : Q : ∃ x ∈ R , x 2 < 0
C. Q: ∀x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∃ x ∈ R , x 2 < 0
D. Q: x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
Trong ví dụ 1, kí hiệu A là tập hợp các quả cầu trắng, B là tập hợp các quả cầu đen. Nêu mối quan hệ giữa số cách chọn một quả cầu và số các phần tử của hai tập A, B.
Số cách chọn một quả cầu = tổng số các phần tử của hai tập A, B
Dùng các kí hiệu để viết các câu sau và viết mệnh đề phủ định của nó.
a) Có một số hữu tỉ mà nghịch đảo của nó lớn hơn chính nó.
\(a,\exists x\in Q:x< \dfrac{1}{x}\)
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Có một số thực bằng số đối của nó.
∃ x ∈ R : x = - x (đúng)
Phủ định ∀ x ∈ R : x ≠ - x (sai)
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số hữu tỉ nhỏ hơn nghịch đảo của nó;
Ví dụ 3: Viết tập hợp A các số tự nhiên nhỏ hơn 10, tập hợp B các số tự nhiên nhỏ
hơn 5, rồi dùng kí hiệu \(\subset\) để thể hiện quan hệ giữa hai tập hợp trên.
A={0;1;2;3;4;5;6;7;8;9}
B={1;2;3;4}
\(\Rightarrow B\subset A\)
#H
Bài làm:
A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
B = {0; 1; 2; 3; 4}.
B ⊂ A.
~ HT ~
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số tự nhiên đều lớn hơn 0.