Những câu hỏi liên quan
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 17:01

Tứ giác ABCD là hình bình hành 

\( \Leftrightarrow \left\{ \begin{array}{l}
AB // DC\\
AB = DC
\end{array} \right.\)

Mà \(AB // DC \Leftrightarrow \overrightarrow {AB}  ,\, \overrightarrow {DC} \) cùng phương, do đó cùng hướng.

\( \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} , \overrightarrow {DC} \,{\rm{ cùng hướng}}\\
AB = DC
\end{array} \right.\)

\(\Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC} \)

Vậy tứ giác ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {AB}  = \overrightarrow {DC} \).

Bình luận (0)
SK
Xem chi tiết
H24
30 tháng 3 2017 lúc 11:46

Ta chứng minh hai mệnh đề:

- Khi = thì ABCD là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

= =

cùng hướng.

cùng hướng => cùng phương, suy ra giá của chúng song song với nhau, hay AB // DC (1)

Ta lại có = => AB = DC (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác ABCD có một cặp cạnh song song và bằng nhau nên nó là hình bình hành.

- Khi ABCD là hình bình hành thì =

Khi ABCD là hình bình hành thì AB // CD. Dễ thấy, từ đây ta suy ra hai vec tơ cùng hướng (3)

Mặt khác AB = CD => = (4)

Từ (3) và (4) suy ra = .

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 15:39

Tứ giác ABCD là một hình bình hành \( \Leftrightarrow \left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\)

\( \Leftrightarrow \) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) cùng hướng và AD = BC.

\( \Leftrightarrow \overrightarrow {BC}  = \overrightarrow {AD} .\) (đpcm)

Bình luận (0)
LL
Xem chi tiết
NM
14 tháng 12 2021 lúc 19:57

BC//AD nên \(\widehat{A}+\widehat{B}=180^0;\widehat{C}+\widehat{D}=180^0\)

Mà \(\widehat{A}=\widehat{C}\Rightarrow\widehat{B}=\widehat{D}\)

Vậy ABCD là hbh

Bình luận (1)
NH
Xem chi tiết
NT
12 tháng 11 2021 lúc 21:50

Chọn D

Bình luận (0)
TL
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
QN
Xem chi tiết
NT
15 tháng 12 2023 lúc 23:03

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB

Bình luận (0)