Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 1 2017 lúc 4:01

a ≥ 0; b  ≥  0 và a < b ⇒ b > 0

Ta có:  a   ≥ 0;  b   ≥  0 suy ra:  a  +  b  > 0     (1)

Mặt khác: a – b = a 2 - b 2  = ( a  +  b  )( a -  b  )

Vì a < b nên a – b < 0

Suy ra: ( a  +  b  )( a  -  b  ) < 0     (2)

Từ (1) và (2) suy ra:  a  -  b  < 0 ⇒  a  <  b

Bình luận (0)
DL
Xem chi tiết
NT
22 tháng 12 2021 lúc 11:19

a<b

\(\Leftrightarrow\sqrt{a}< \sqrt{b}\)

Bình luận (0)
NH
Xem chi tiết
SX
Xem chi tiết
CW
11 tháng 9 2016 lúc 9:35

a) \(a< b\)

\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)

\(\rightarrow\sqrt{a}< \sqrt{b}\)

b) \(\sqrt{a}< \sqrt{b}\)

\(\rightarrow\sqrt{a}^2< \sqrt{b}^2\)

\(\rightarrow a< b\)

Ko chắc lắm ^^!

Bình luận (0)
VM
Xem chi tiết
PL
20 tháng 6 2019 lúc 12:42

\(a,\)\(a< b\Rightarrow a-b< 0\)

\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)

Vì \(\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)\(\Rightarrow\sqrt{a}< \sqrt{b}\)\(\left(đpcm\right)\)

\(b,\)\(\sqrt{a}< \sqrt{b}\)\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)

Ta có :\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=a-b\)

Mà \(\sqrt{a}-\sqrt{b}< 0\)\(\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow a-b< 0\)\(\Leftrightarrow a< b\)

Bình luận (0)
MM
Xem chi tiết
NT
Xem chi tiết
NT
23 tháng 9 2021 lúc 4:54

\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)

\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)

Dấu ''='' xảy ra khi a = b 

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
HB
8 tháng 6 2017 lúc 18:21

Hỏi đáp Toán

Bình luận (0)
LM
26 tháng 5 2018 lúc 13:39

a) Vì a,b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) = \(a^2\) ; \(\sqrt{b}\) = \(b^2\)
Vì a < b nên \(a^2\) < \(b^2\)
=> \(\sqrt{a}\) < \(\sqrt{b}\) (dpcm)

b) Vì a, b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) < \(\sqrt{b}\) => \(\left(\sqrt{a}\right)^2\) < \(\left(\sqrt{b}\right)^2\) => a < b (dpcm)

Bình luận (0)
PB
26 tháng 7 2019 lúc 12:26

Do a,b không âm và a<b nên b>0
=> \(\sqrt{a}\)+\(\sqrt{b}\) > 0 (1)

Mặt khác, ta có:
a-b=( \(\sqrt{a}\) +\(\sqrt{b}\))(\(\sqrt{a}\)-\(\sqrt{b}\)) (2)
Vì a<b nên a-b<0, từ (2) suy ra
( \(\sqrt{a}\) +\(\sqrt{b}\))(\(\sqrt{a}\)-\(\sqrt{b}\)) < 0 (3)
Từ (1) và (3), ta có:
\(\sqrt{a}\)-\(\sqrt{b}\) < 0 hay \(\sqrt{a}\)<\(\sqrt{b}\)

Bình luận (0)
HH
Xem chi tiết
BB
23 tháng 7 2020 lúc 21:43

a, Vì a,b không âm:

\(\Rightarrow\sqrt{a}+\sqrt{b}>0\)

Có \(a-b>0\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)>0\)

Mà \(\Rightarrow\sqrt{a}+\sqrt{b}>0\)

\(\Rightarrow\sqrt{a}-\sqrt{b}>0\Leftrightarrow\sqrt{a}>\sqrt{b}\)

b, Tương tự phần a: 

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)>0\Leftrightarrow a-b>0\Leftrightarrow a>b\)

( đổi ngược dấu a,b lại giúp mình nhé.)

Bình luận (0)
 Khách vãng lai đã xóa
HH
23 tháng 7 2020 lúc 21:51

Mới nghĩ ra câu a) 1 kiểu khác nhưng không biết đúng không  :> nó vẫn ra hq như nhau thôi 

Do a,b không âm và a < b nên b > 0 , suy ra :

\(\sqrt{a}+\sqrt{B}>0\)   ( 1 )

Mặt khác , ta có :

\(a-b=\left(\sqrt{a}\right)^2-\left(\sqrt{b^2}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)( 2 )

Vì a < b nên a - b < 0 , từ ( 2 ) suy ra :

\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)< 0\)( 3 )

Từ (1) và (3) , suy ra :

\(\sqrt{a}-\sqrt{b}< 0\)hay \(\sqrt{a}< \sqrt{b}\)

Bình luận (0)
 Khách vãng lai đã xóa