Những câu hỏi liên quan
TM
Xem chi tiết
TT
20 tháng 1 2021 lúc 18:18

Vì tam giác ABC cân tại A(gt)

Suy ra AB= AC tc tâm giác cân

Xét tam giác ABD và tam giác ACE có

góc ADB = góc AEC (=90)

AB = AC cmt

Góc A chung

Suy ra tâm giác ABD = tâm giác ACE ch gn

 

 

 

 

 

 

 

Bình luận (0)
TT
20 tháng 1 2021 lúc 18:22

Xét tam giác BDC và tam giác CEB có

Góc BDC= góc CEB = 90

BC chung

Góc B = góc C tam giác ABC cân tại A

Suy ra tg BDC = tg CEB ch góc nhọn

 

 

Bình luận (1)
NH
Xem chi tiết
QD
10 tháng 4 2018 lúc 12:59

a)Xét tam giác ABM và tam giác BCN có:

+AB=CB(Theo D/lí tam giác cân)

+Góc B chung

+AM=CN(Vì là hai cạnh tương ứng của hai tam giác bằng nhau)

=> Tam giác ABM=BCN(theo t.hợp C.G.C)\

Vậy tam giác ABM=tam giác BCN

Bình luận (0)
NA
Xem chi tiết
KQ
Xem chi tiết
NT
2 tháng 3 2022 lúc 21:09

a: Ta có: ΔABC cân tại A

nên AB=AC

b: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

c: Ta có: ΔABM=ΔACN

nên AM=AN

hay ΔAMN cân tại A

Bình luận (0)
KQ
2 tháng 3 2022 lúc 21:09

Giúp mik vs mn, đang cầm gấp ạ

 

Bình luận (0)
NM
Xem chi tiết
SP
8 tháng 4 2022 lúc 17:14

a)Xét △ABC vuông tại A (gt)

=> BC2 = AB2 + AC2 (định lý Pytago)

     BC2 = 52 + 122 = 25 + 144 = 169

=> BC = \(\sqrt{169}\) = 13 cm

Xét △ABC có BF là tia phân giác của góc ABC (gt)

=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)

=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)

=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm

b)Xét △ABF và △HBE có:

góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)

góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABF ∼ △HBE (g.g)

c) Vì △ABF ∼ △HBE (câu b)

=> góc BFA bằng góc BEH

mà góc AEF bằng góc BEH (2 góc đối đỉnh)

=> góc BFA bằng góc AEF

=> △AEF cân tại A

d)Xét △ABC và △AHB có:

góc ABC chung

góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABC ∼ △HBA (g.g)

=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)

Xét △ABH có BE là tia phân giác của góc ABC (gt)

=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)

Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)

=> AB.AE=BC.HE(chắc vậy?)

Bình luận (0)
SP
8 tháng 4 2022 lúc 17:16

câu d sai đề à????

Bình luận (0)
TT
Xem chi tiết
CB
15 tháng 5 2018 lúc 20:47

a)vì tam giác ABC cân tại A

=>AB=AC và góc ABC=góc ACB

xét tam giác ABM và tam giác ACM có

góc AMB=góc AMC(= 90 độ)

AB=AC

góc ABM=góc ACM

=>tam giác ABM = tam giác ACM (c/h-g/n)

=>MB=MC(2 cạnh tương ứng)

b)ta có BC=24

mà MB=MC

=>M là trung điểm của BC

=>BM=MC=24/2=12 cm

xét tam giác ABM vuông tại M,áp dụng định lý PY-ta go ta có:

\(AB^2=AM^2+BM^2\)

\(AM^2=AB^2-BM^2\)

\(AM^2=20^2-12^2\)

\(AM^2=400-144\)

AM^2=256

=>AM=16 cm

c)vì tam giác ABM = tam giác ACM(cmt)

=>góc BAM=góc CAM(2 góc tương ứng)

xét tam giác HAM và tam giác KAM có

góc AHM = góc AKM(= 90 độ)

cạnh AM chung

góc BAM=góc CAM

=>tam giác HAM = tam giác KAM(c/h-g/n)

=>AH=AK(2 cạnh tương ứng)

=>tam giác AHK cân tại A

d)mình không biết làm phàn này nha

Bình luận (0)
VL
Xem chi tiết
TT
Xem chi tiết
LM
Xem chi tiết
HN
4 tháng 5 2022 lúc 6:38

a, Vì tam giác ABC là tam giác cân nên góc BAC=góc BCA (1)

Mà AM là tia phân giác của góc BAC=> góc BAM=Góc MAC (2)

CN là tia phân giác của góc BCA nên góc BCN= góc NCA (3)

Từ (1) (2)(3) suy ra góc BAM=góc BNC 

Xét 2 tam giác ABM và tam giác CBN, ta có: 

Góc B chung 

BAM=BCN (cmt)

=>tam giác ABM đồng dạng với tam giác CBN(g.g)

Bình luận (0)
HN
4 tháng 5 2022 lúc 6:40

b, Vì tam giác ABM đồng dạng với tam giác CBN (theo câu a) nên ta có tỉ lệ sau:

BM/BN=BC/BA=>NM//AC( định lý Ta-lét) (đcpcm) 

Bình luận (0)
NA
Xem chi tiết
NA
14 tháng 3 2022 lúc 20:16

có b = 60 độ nha

 

Bình luận (0)