Những câu hỏi liên quan
H24
Xem chi tiết
NM
29 tháng 11 2021 lúc 10:03

\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)

Bình luận (0)
KO
Xem chi tiết
NT
24 tháng 8 2017 lúc 19:32

+) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)

( do b, d > 0 )

+) Ta có: \(ad< bc\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\left(b,d>0\right)\)

Bình luận (0)
NH
24 tháng 8 2017 lúc 19:35

Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì \(a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì \(\left(a+c\right).d< \left(b+d\right).c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ab< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Chúc Bạn Học Tốt !!!Đạt nhiều thành tích trong học tập

Xem lại đề nha bạn :\(\dfrac{a}{b},\dfrac{c}{d}\left(b,d>0\right)\) chứ

Bình luận (0)
BN
Xem chi tiết
LT
29 tháng 6 2017 lúc 14:10

B1: Ta có :a/b < c/d

=>ad/bd < bc/ba

=>ad < bc

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
26 tháng 4 2019 lúc 10:05

Bình luận (0)
DL
Xem chi tiết
FF
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Bình luận (0)
H24
Xem chi tiết
TD
Xem chi tiết
NT
27 tháng 8 2015 lúc 15:16

Ta có : \(\frac{a}{b}0\)   \(\left(1\right)\)

vì \(ad\)\(

Bình luận (0)
FB
23 tháng 8 2020 lúc 8:10

dễ quá !!!

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
OO
25 tháng 6 2016 lúc 14:33

Ta có:a/b<c/d =>ad<bc                    (1)

Thêm ab vào (1) ta đc:

ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d             (2)

Thêm cd vào 2 vế của (1), ta lại có:

ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d               (3)

Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d

Bình luận (0)