Những câu hỏi liên quan
TD
Xem chi tiết
HL
Xem chi tiết
NN
9 tháng 12 2017 lúc 21:29

Giải:

Ta có: \(x:y:z=a:b:c\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z.\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2_{\left(1\right)}.\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2_{\left(2\right)}.\)

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right).\)

Bình luận (0)
HT
Xem chi tiết
TD
5 tháng 1 2018 lúc 10:26

x:y:z = a:b:c

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)

\(\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)

Bình luận (0)
BB
Xem chi tiết
VL
Xem chi tiết
HM
2 tháng 9 2015 lúc 11:04

Kb: Có lẽ tôi viết đến đây cũng đã nói hết cảm xúc trong lòng mình. Mọi chuyện rồi cũng sẽ ổn thôi. Đối với đây là 1 cuộc chia tay vô cùng ý nghĩa-Cuộc chia tay của những con búp bê

Bình luận (0)
VQ
15 tháng 10 2016 lúc 20:06

Ta có BĐT Bu-nhi-a-cốp-xki sau đây : 
(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) >= (ax + by + cz)^2 
(Bạn tự cm BĐT này) 
Từ đó suy ra : (a + b + c)^2 = (a.căn x / căn x + b.căn y/ căn y + c.căn z/căn z)^2 
<= [(a/căn x)^2 + (b/căn y)^2 + (c/căn z)^2][(căn x)^2 + (căn y)^2 + (căn z)^2] = (a^2/x + b^2/y + c^2/z)(x+y+z) 
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/(x+y+z)

Bình luận (0)
PA
Xem chi tiết
B2
Xem chi tiết
AH
9 tháng 11 2021 lúc 21:27

Lời giải:

Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$

$\Rightarrow x=at; y=bt; z=ct$. Ta có:

$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$

Mặt khác:

$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$

Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)

Bình luận (1)
DH
Xem chi tiết
OO
1 tháng 9 2015 lúc 15:03

minh mới giải được phần đầu thui nhe!!!!!!!

Ta có: a+b+c=a^2+b^2+c^2=1
Vì x:y:z=a:b:c nên ta có:
x/a=y/b=z/c
Áp dcụng công thức của dãy tỉ số bằng nhau ta có:
x/a=y/b=z/c=(x+y+z)/(a+b+c)=(x+y+z)/1=x+y+z

Bình luận (0)
SY
Xem chi tiết
KA
31 tháng 5 2017 lúc 9:36

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\left(1\right)\)

\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\left(2\right)\)

Mặc khác , từ 1 , ta lại có :

\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\left(x+y+z\right)^2\left(3\right)\)

Từ (2) và (3) ta có điều cần chứng minh 

Bình luận (0)