Những câu hỏi liên quan
VH
Xem chi tiết
NT
Xem chi tiết
NH
12 tháng 3 2016 lúc 21:14

a+b+c=0 suy ra a+b=-c ; a+c=-b ; b+c=-a 

bình phương hết lên ta có 

a^2+b^2+2ab=c^2 ; a^2+c^2+2ac=b^2 ; b^2+c^2+2bc=a^2

suy ra a^2+b^2-c^2=-2ab ; a^2+c^2-b^2=-2ac ; b^2+c^2-a^2=-2bc

thay vào B=-1/2(1/ab+1/bc+1/ac)=-1/2(c/abc+a/abc+b/abc)=0 do abc khác 0 và a+b+c=0

Bình luận (0)
NH
12 tháng 3 2016 lúc 21:16

ko cần tích nhưng cần một lời cảm ơn

Bình luận (0)
VT
Xem chi tiết
TL
22 tháng 4 2019 lúc 22:37

Ta có : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=49\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=49\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c+b+a}{abc}\right)=49\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+0=49\)(vì a + b + c = 0)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Vậy ...

Bình luận (0)
TQ
Xem chi tiết
LV
19 tháng 6 2023 lúc 17:04

a) Ta có: \(A\left(x\right)=ax^2+bx+c\)

Thay \(A\left(-1\right)\)  ta được:

\(A\left(-1\right)=a\left(-1\right)^2+b\left(-1\right)+c=a+c-b\)

\(=b-8-b=-8\)

b) \(\left\{{}\begin{matrix}A\left(0\right)=4\\A\left(1\right)=9\\A\left(2\right)=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b+c=9\\4a+2b+c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\4a+2b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=5\\2a+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a=0\\b=5\end{matrix}\right.\)

c) 

Ta có: \(\left\{{}\begin{matrix}A\left(2\right)=4a+2b+c\\A\left(-1\right)=a-b+c\end{matrix}\right.\)

\(\Leftrightarrow A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)

\(\Leftrightarrow A\left(2\right)=-A\left(-1\right)\)

\(\Leftrightarrow A\left(2\right)\times A\left(-1\right)=-\left[A\left(2\right)\right]^2\le0\)

 

Bình luận (0)
PD
27 tháng 4 2024 lúc 10:48
Bình luận (0)
LH
Xem chi tiết
H24
7 tháng 5 2023 lúc 16:21

1. So sánh 
Ta có:
A = abc + mn + 352 
B = 3bc + 5n + am2
B = 300 + 10b + c + 50 + n + 100a + 10m + 2
B = 352 + abc + mn 
=> A = B = 352 + abc + mn 
2.
a) a : 1 + 0 : a 
= a + 0 
= aa
b) a . 1 + 0 
= a + 0 
= a
c)  a : a + 0 . a
= 1 + 0 
= 11 
d) ( a . 1 - a : 1 ) . 4 
= ( a - a ) . 4 
= 0 . 4 
= 00 
 - HokTot - 

Bình luận (0)
NM
Xem chi tiết
H24
29 tháng 8 2023 lúc 22:21

Xét b2+c2-a2=(b+c)2-a2-2bc=(a+b+c)(b+c-a)-2bc=-2bc
cmtt=>P=\(\dfrac{1}{-2bc}\)+\(\dfrac{1}{-2ab}\)+\(\dfrac{1}{-2ac}\)=\(\dfrac{a+b+c}{-2abc}\)=0

Bình luận (0)
VK
Xem chi tiết
TN
5 tháng 7 2016 lúc 6:24

Ta có: 

bc/a^2 + ac/b^2 + ab/c^2=abc(1/a^3 + 1/b^3 + 1/c^3) 

Gt => 1/a + 1/b=-1/c 

=> 1/a^3+1/b^3 = (1/a+1/b)^3 - 3.1/a.1/b(1/a+1/b) = -1/c^3 + 3.1/(abc) 

=> 1/a^3 + 1/b^3 + 1/c^3=3/(abc) 

=> bc/a^2 + ac/b^2 + ab/c^2=3.

Bình luận (0)
OO
Xem chi tiết
AH
5 tháng 11 2023 lúc 19:25

Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$

$\Rightarrow ab+bc+ac=0$

Đặt $ab=x, bc=y, ac=z$ thì $x+y+z=0$

Có:

$M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}$
$=\frac{b^3c^3+a^3c^3+a^3b^3}{(abc)^2}$

$=\frac{x^3+y^3+z^3}{xyz}=\frac{(x+y)^3-3xy(x+y)+z^3}{xyz}$

$=\frac{(-z)^3-3xy(-z)+z^3}{xyz}$
$+\frac{-z^3+3xyz+z^3}{xyz}=\frac{3xyz}{xyz}=3$

Bình luận (0)
HN
Xem chi tiết
NC
Xem chi tiết
NC
13 tháng 3 2022 lúc 13:37

P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

=
\(\dfrac{a+b+c}{\left(b^2+c^2-a^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+c^2-b^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+b^2-c^2\right)\left(a+b+c\right)}\)
= 0+0+0 = 0
Vậy P= 0 
Ngu vãi ko bt đúng không nx

Bình luận (3)
TH
13 tháng 3 2022 lúc 14:31

\(P=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

\(=\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{a^2+c^2-\left(-c-a\right)^2}+\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{a^2+c^2-\left(c+a\right)^2}+\dfrac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{a^2+c^2-a^2-2ac-c^2}+\dfrac{1}{a^2+b^2-a^2-2ab-b^2}\)

\(=\dfrac{1}{-2bc}+\dfrac{1}{-2ac}+\dfrac{1}{-2ab}\)

\(=\dfrac{a}{-2bca}+\dfrac{b}{-2acb}+\dfrac{c}{-2abc}\)

\(=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)

Bình luận (1)