NC

Cho a+b+c=0 và abc khác 0,tính giá trị của biểu thức:
P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

NC
13 tháng 3 2022 lúc 13:37

P= \(\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

=
\(\dfrac{a+b+c}{\left(b^2+c^2-a^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+c^2-b^2\right)\left(a+b+c\right)}+\dfrac{a+b+c}{\left(a^2+b^2-c^2\right)\left(a+b+c\right)}\)
= 0+0+0 = 0
Vậy P= 0 
Ngu vãi ko bt đúng không nx

Bình luận (3)
TH
13 tháng 3 2022 lúc 14:31

\(P=\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{a^2+c^2-b^2}+\dfrac{1}{a^2+b^2-c^2}\)

\(=\dfrac{1}{b^2+c^2-\left(-b-c\right)^2}+\dfrac{1}{a^2+c^2-\left(-c-a\right)^2}+\dfrac{1}{a^2+b^2-\left(-a-b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-\left(b+c\right)^2}+\dfrac{1}{a^2+c^2-\left(c+a\right)^2}+\dfrac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\dfrac{1}{b^2+c^2-b^2-2bc-c^2}+\dfrac{1}{a^2+c^2-a^2-2ac-c^2}+\dfrac{1}{a^2+b^2-a^2-2ab-b^2}\)

\(=\dfrac{1}{-2bc}+\dfrac{1}{-2ac}+\dfrac{1}{-2ab}\)

\(=\dfrac{a}{-2bca}+\dfrac{b}{-2acb}+\dfrac{c}{-2abc}\)

\(=\dfrac{a+b+c}{-2abc}=\dfrac{0}{-2abc}=0\)

Bình luận (1)

Các câu hỏi tương tự
NM
Xem chi tiết
TL
Xem chi tiết
LH
Xem chi tiết
AV
Xem chi tiết
HP
Xem chi tiết
MH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết