Với các số nguyên a,b thỏa mãn ∫ 1 2 ( 2 x + 1 ) ln x d x = a + 3 2 + ln b tính tổng a+b
A. P = 27
B. P = 28
C. P = 60
D. P = 61
tập hợp tất cả các số nguyên x thỏa mãn -2 < X <2 là
A.{ -2 ,-1, 0, 1 , 2} B.{-1,0,1}
C.{ -1,1,2 } D. { -1,0,1,2 }
Gọi tập hợp tất cả các số nguyên \(x\) thỏa mãn đề bài trên là \(A.\)
\(\Rightarrow A=\left\{-1;0;1\right\}\)
\(\Leftrightarrow B.\left\{-1;0;1\right\}\)
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
1. Tìm tất cả các số nguyên x, y thỏa mãn : x(2y+3)=y+1.
2. Tìm tất cả các số nguyên X thỏa mãn
a) (x+2) là bội của (×^2-7)
b) (-1)+3+(-5)+7+...+x=2002.
Giải giúp mình đi . Giải cụ thể nhé.
Cho hàm số y = ln ( 2 x - a ) - 2 m ln ( 2 x - a ) + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + . . . + log . . . 2 ( x 2 + a 2 ) - ( 2 n + 1 - 1 ) ( log 2 x a + 1 ) = 0
(với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thoả mãn m a x [ 1 ; e 2 ] y = 1 . Số phần tử của S là
A. 0
B. 1
C. 2
D. Vô số
1)tìm các số nguyên x và y thỏa mãn
(x+y)^2=(x-1)(y+1)
2) Cho đa thức f(x)thỏa mãn f(x)+2.f(2-x)=x+2 với mọi giá trị của x. tính f(-1)
3)Cho ba số a,b,c thỏa mãn abc=1
tính B=\(\frac{1}{1+a+ab}\)+ \(\frac{1}{1+b+bc}\)+ \(\frac{1}{1+c+ca}\)
4) Cho tam giác ABC có AB<AC tia phân giac góc A cắt BC tại D. Chứng minh rằng BD<DC
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)