So sánh: 101 x 4 ... 200 – 25 x
A. <
B. >
C. =
a) 1/3 + 1/2 : x = -4
b) 2. ( x - 2)^2= 49/8
bài 2:
So sánh 3^100 và 5^200
Bài 3:
chứng tỏ rằng: 75^20 = 42^10 . 25^11
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)
\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)
\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)
P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r
So sánh:
a)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với 1
b)\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{149}+\dfrac{1}{150}\) với\(\dfrac{1}{3}\)
c)\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\) với \(\dfrac{7}{12}\)
c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)
Tương tự
\(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)
\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2)
Từ (1) và (2) ta được
\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)
\(\overline{50\text{ hạng tử }}\) \(\overline{50\text{ hạng tử }}\)
\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\)
\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)
\(\Rightarrow P< \dfrac{5}{6}< 1\)
Tìm z thuộc Z
a) 15 - 3(x-1) = 15 + (7-2x)
b) (48 - |x+1|) (x2 - 25) = 0
c) (|x+3| + 7) (x3 - 27) = 0
d) (2x - 4) (3x + 6) (x+10) < 0
e) (x-1)+(x+1)+(x+2)+(x+3) + ..... + 101 = 200
2. So sánh: a2 và 2a
a2 và 2a
Nếu a=0 thì 02=2.0
Nếu a=1 thì 12=2.1
Nếu a=2 thì 22=2.2
Nếu a>2 hoặc a<0 thì a2=a.a=a+a+...+a(a số a) ; 2a=2.a=a+a
=>a2>2.a
e) Theo logic sửa đoạn cuối.
\(\left(x-1\right)+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)+\left(x+101\right)=200\)
vế trài bỏ ngoặc rồi ghép lại:
\(A=\left(x+x+x....x+x\right)\) có 102 số hạng \(A=102.x\)
\(B=\left(-1+1+2+....+101\right)\) có 102 số hạng
\(B=\left(1+2+..+101\right)-1=51.101-1\) Tổng của 101 số tự nhiên đầu tiên, chưa hiểu "đăng câu khác" giải chi tiết!
\(A+B=101x+101.51-1=200\Rightarrow x=\frac{201-101.51}{101}=201-\frac{51}{101}\)
p/s: xem lại đề số hạng đầu (x-1)???
kiểm tra lại số liệu tính toán (+-./)
Giải giúp mk bài này với
A = 1/101 + 1/102 + 1/103 + ... + 1/200
So sánh A với 3/4
Cho A = x 2 + 1 3 x : x 2 + 1 x − 1 : x 3 − 1 x 2 + x : x 2 + 2 x + 1 x 2 + x + 1 và B = x + 3 x 2 − 1 : x + 4 x 2 + 6 x − x + 3 x 2 − 1 : x + 4 x − 4 . Khi x = 101, hãy so sánh A và B.
A. B < A
B. B > A
C.B = A
D. B ≤ A
1)tìm x
a)(1/3-5/6.x)^3+21/54=5/6
b)1/12-1/3(1/2.x-1)^4=1/16
c)(3/5)^x-1+5.(3/5)^x-1=54/25
d)(2/3)^x+(2/3)^x+2=101/243
2) so sánh
a)1/27^11 và 1/81^8
b)1/3^99 và 1/11^21
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}
1)tìm x
a)(1/3-5/6.x)^3+21/54=5/6
b)1/12-1/3(1/2.x-1)^4=1/16
c)(3/5)^x-1+5.(3/5)^x-1=54/25
d)(2/3)^x+(2/3)^x+2=101/243
2) so sánh
a)1/27^11 và 1/81^8
b)1/3^99 và 1/11^21
Bài 5 :
a) Chứng minh rằng : 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/199.200/ 1/101 + 1/102 + 1/103 + ... + 1/200 = 1
b) So sánh A = 1 mũ 2/1.2 x 2 mũ 2/2.3 x 3 mũ 2/3.4 x 99 mũ 2/99.100 x 100 mũ 2/100.101 và B = 2 mũ 2/1.3 x 3 mũ 2/2.4 x 4 mũ 2/3.5
x .... x 59 mũ 2/58.60
Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
1) chứng minh: A= 75( 42014 + 42013+ ... + 4 +1 )+ 25 chia hết cho 100
2) cho a,b,c>0. chứng tỏ rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
3) Tìm x biết : |x+1/101| + |x+2/101| + |x+3/101|+....+ |x+100/101|=1001x