Những câu hỏi liên quan
PA
Xem chi tiết
H24
2 tháng 10 2018 lúc 14:02

\(5^{200}=\left(5^2\right)^{100}=25^{100}\)

\(3< 25=>3^{100}< 25^{100}=>3^{100}< 5^{200}\)

\(\frac{75^{20}}{45^{10}.25^{15}}=\frac{25^{20}.3^{20}}{3^{10}.3^{10}.5^{10}.25^{15}}=\frac{25^{20}}{25^5.25^{15}}=1\)

\(=>75^{20}=45^{10}.25^{15}\left(dpcm\right)\)

P/S:nếu a=b=>a:b=1 mk làm theo cách đó cho nhanh mà bn ghi sai đề r

Bình luận (0)
PL
Xem chi tiết
XO
3 tháng 2 2023 lúc 12:55

c) P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

Dễ thấy \(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\)(50 hạng tử)

\(\Leftrightarrow\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}>\dfrac{1}{150}.50=\dfrac{1}{3}\)(1)

Tương tự

 \(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)(50 hạng tử)

\(\Leftrightarrow\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}>50.\dfrac{1}{200}=\dfrac{1}{4}\)(2) 

Từ (1) và (2) ta được

\(P>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) 

Bình luận (0)
XO
3 tháng 2 2023 lúc 13:08

P = \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)

\(=\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...+\dfrac{1}{200}\right)\)

         \(\overline{50\text{ hạng tử }}\)                            \(\overline{50\text{ hạng tử }}\)

\(< \left(\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}\right)+\left(\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\right)\) 

\(=\dfrac{1}{100}.50+\dfrac{1}{150}.50=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

\(\Rightarrow P< \dfrac{5}{6}< 1\)

Bình luận (0)
HK
Xem chi tiết
NH
21 tháng 2 2017 lúc 5:59

a2 và 2a

Nếu a=0 thì 02=2.0

Nếu a=1 thì 12=2.1

Nếu a=2 thì 22=2.2

Nếu a>2 hoặc a<0 thì a2=a.a=a+a+...+a(a số a) ; 2a=2.a=a+a

=>a2>2.a

Bình luận (5)
H24
22 tháng 2 2017 lúc 7:25

e) Theo logic sửa đoạn cuối.

\(\left(x-1\right)+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)+\left(x+101\right)=200\)

vế trài bỏ ngoặc rồi ghép lại:

\(A=\left(x+x+x....x+x\right)\) có 102 số hạng \(A=102.x\)

\(B=\left(-1+1+2+....+101\right)\) có 102 số hạng

\(B=\left(1+2+..+101\right)-1=51.101-1\) Tổng của 101 số tự nhiên đầu tiên, chưa hiểu "đăng câu khác" giải chi tiết!

\(A+B=101x+101.51-1=200\Rightarrow x=\frac{201-101.51}{101}=201-\frac{51}{101}\)

p/s: xem lại đề số hạng đầu (x-1)???

kiểm tra lại số liệu tính toán (+-./)

Bình luận (0)
DM
Xem chi tiết
PB
Xem chi tiết
CT
8 tháng 3 2019 lúc 16:04

Bình luận (0)
H24
Xem chi tiết
TL
28 tháng 6 2015 lúc 13:38

a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)

=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)

b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)

=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc  \(\frac{1}{2}x-1=-\frac{1}{2}\)

=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1

c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)

=> x - 1= 2 => x = 3

d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)

=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)

2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)\(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)

Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)

b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}

Bình luận (0)
H24
Xem chi tiết
MT
28 tháng 6 2015 lúc 11:10

nhjeu wa bạn giải 1 mjk luôn đi

Bình luận (0)
TT
Xem chi tiết
TT
6 tháng 5 2019 lúc 18:20

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

Bình luận (0)
NA
6 tháng 5 2019 lúc 18:22

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

Bình luận (0)
TY
Xem chi tiết