Những câu hỏi liên quan
MH
Xem chi tiết
H24
17 tháng 5 2021 lúc 22:32

a)PT có 2 nghiệm phân biệt
`<=>Delta>0`
`<=>(2m+3)^2+4(2m+4)>0`
`<=>4m^2+12m+9+8m+16>0`
`<=>4m^2+20m+25>0`
`<=>(2m+5)^2>0`
`<=>m ne -5/2`
b)Áp dụng vi-ét:
$\begin{cases}x_1+x_2=2m+3\\x_1.x_2=-2m-4\\\end{cases}$
`|x_1|+|x_2|=5`
`<=>x_1^2+x_2^2+2|x_1.x_2|=25`
`<=>(x_1+x_2)^2+2(|x_1.x_2|-x_1.x_2)=25`
`<=>(2m+3)^2+2[|-2m-4|-(-2m-4)]=25`
Với `-2m-4>=0<=>m<=-2`
`=>pt<=>(2m+3)^2-25=0`
`<=>(2m-2)(2m+8)=0`
`<=>(m-1)(m+4)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=-4\end{array} \right.$
`-2m-4<=0=>m>=-2=>|-2m-4|=2m+4`
`<=>4m^2+12m+9+8m+16=25`
`<=>4m^2+20m=0`
`<=>m^2+5m=0`
`<=>` \left[ \begin{array}{l}x=0\\x=-5\end{array} \right.$
Vậy `m in {0,1,-4,-5}`

Bình luận (0)
NV
Xem chi tiết
LP
Xem chi tiết
NT
20 tháng 2 2022 lúc 23:15

a: \(\Delta=\left(2m-6\right)^2-4\cdot1\cdot\left(m-3\right)\)

\(=4m^2-24m+36-4m+12\)

\(=4m^2-28m+48\)

\(=4\left(m-3\right)\left(m-4\right)\)

Để phương trình có nghiệm kép thì (m-3)(m-4)=0

=>m=3 hoặc m=4

b: Trường hợp 1: m=7/2

Phương trình sẽ là \(2\cdot\left(2\cdot\dfrac{7}{2}+5\right)x-14\cdot\dfrac{7}{2}+1=0\)

\(\Leftrightarrow24x-48=0\)

hay x=2

=>Nhận

Trường hợp 2: m<>7/2

\(\Delta=\left(4m+10\right)^2-4\cdot\left(2m-7\right)\left(-14m+1\right)\)

\(=16m^2+80m+100-4\left(-28m^2+2m+98m-7\right)\)

\(=16m^2+80m+100+112m^2-400m+28\)

\(=128m^2-320m+128\)

\(=64\left(2m^2-5m+2\right)\)

Để phương trình có hai nghiệm phân biệt thì (2m-1)(m-1)=0

=>m=1 hoặc m=1/2

Bình luận (0)
TN
Xem chi tiết
NT
2 tháng 8 2023 lúc 22:06

b: x1=3x2 và x1+x2=2m-2

=>3x2+x2=2m-2 và x1=3x2

=>x2=0,5m-0,5 và x1=1,5m-1,5

x1*x2=-2m

=>-2m=(0,5m-0,5)(1,5m-1,5)

=>-2m=0,75(m^2-2m+1)

=>0,75m^2-1,5m+0,75+2m=0

=>\(m\in\varnothing\)

c: x1/x2=3

x1+x2=2m-2

=>x1=3x2 và x1+x2=2m-2

Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn

Bình luận (0)
BM
Xem chi tiết
NT
9 tháng 1 2024 lúc 10:46

a: \(x^2+\left(2m+1\right)x+m^2-3=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)

\(=4m^2+4m+1-4m^2+12=4m+13\)

Để phương trình có nghiệm kép thì 4m+13=0

=>\(m=-\dfrac{13}{4}\)

Thay m=-13/4 vào phương trình, ta được:

\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)

=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)

=>\(\left(x-\dfrac{11}{4}\right)^2=0\)

=>x-11/4=0

=>x=11/4

b: TH1: m=2

Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)

=>3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

=>Khi m=2 thì phương trình có nghiệm kép là x=1/3

TH2: m<>2

\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)

\(=m^2+2m+1-4\left(m^2-5m+6\right)\)

\(=m^2+2m+1-4m^2+20m-24\)

\(=-3m^2+22m-23\)

Để phương trình có nghiệm kép thì Δ=0

=>\(-3m^2+22m-23=0\)

=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)

c: TH1: m=0

Phương trình sẽ trở thành

\(0x^2-\left(1-2\cdot0\right)x+0=0\)

=>-x=0

=>x=0

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)

\(=4m^2-4m+1-4m^2=-4m+1\)

Để phương trình có nghiệm kép thì -4m+1=0

=>-4m=-1

=>\(m=\dfrac{1}{4}\)

Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)

=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)

=>\(x_1=x_2=\dfrac{2}{2}=1\)

Bình luận (0)
AQ
Xem chi tiết
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 16:57

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

Bình luận (0)
 Khách vãng lai đã xóa
NH
30 tháng 6 2021 lúc 21:32

x=1 và x=3

Bình luận (0)
 Khách vãng lai đã xóa
VL
16 tháng 10 2021 lúc 20:59

Bình luận (0)
 Khách vãng lai đã xóa
AQ
Xem chi tiết
NT
11 tháng 1 2022 lúc 18:30

a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)

\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)

=>-16m>=-28

hay m<=7/4

b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)

\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)

=>4m-3=0

hay m=3/4

c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)

=>-16m+4<0

hay m>1/4

Bình luận (0)
AQ
Xem chi tiết
NT
5 tháng 1 2022 lúc 0:26

a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)

=>4m=-13

hay m=-13/4

c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)

=>-8m>=-4

hay m<=1/2

Bình luận (0)