Tìm số tự nhiên x biết 1 3 + 1 6 + 1 10 + ... + 1 x ( x + 1 ) : 2 = 2019 2021
A. 2019 2021
B. 2021
C. 2020
D. 2019
tìm số tự nhiên x biết 1/3+1/6+1/10+...+2/x.(x+1)=2020/2022
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)
=>1/x+1=-1009/2022
=>x+1=-2022/1009
hay x=-3031/1009
tìm số tự nhiên x biết:
1/3+1/6-1/10+...+1/x(x+1):2=2001/2003
Ta có:
1/3 + 1/6 + 1/10 + ... + 1/x(x+1):2 = 2001/2003
=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2001/2003
=> 2 [1/6 + 1/12 + 1/20 + ... + 1/x(x+1)] = 2001/2003
=> 2 [1/2x3 + 1/3x4 + 1/4x5 + ... + 1/x+(x+1)] = 2001/2003
=> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1= 2001/2003 : 2
=> 1/2 - 1/x+1 = 2001/4006
=> 1/x+1 = 1/2 - 2001/4006 = 1/2003
=> x+1 = 2003 = 2002 + 1
=>x = 2002
tìm số tự nhiên x biết : 1/3+1/6+1/10+...+2/ x(x+1)=2013/2015
tìm số tự nhiên x biết : 1/3 + 1/6 +1/10 + .....+2/x(x+1) =2013/2015
=>2/6+2/12+2/20+...+2/x(x+1)=2013/2015
=>2(1/2.3+1/3.4+1/4.5+...+1/x(x+1)=2013/2015
=>2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
=>(1/2-1/x+1)=2013/2015:2
=>-(1/x+1)=2013/4030-1/2
=>-(1/x+1)=-(1/2015)=>x+1=2015=>x=2014
Tìm số tự nhiên x biết:1/3+1/6-1/10+.....+1/x(x+1):2=2001/2003
Tìm số tự nhiên x biết rằng : 1/3 + 1/6 + 1/10 +....+ 2/x(x+1) = 2007/2009
Đặt vế trái là A ta có:
\(\frac{A}{2}=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{x+1-x}{x\left(x+1\right)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow A=\frac{x-1}{x+1}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2007}{2009}\Leftrightarrow x=2003\)
\(\frac{A}{2}=\frac{1}{2}-\frac{1}{x+1}\Rightarrow\frac{A}{2}=\frac{x+1-2}{2\left(x+1\right)}\Rightarrow...
Đặt vế trái là A ta có:
Tìm số tự nhiên x biết rằng 1/3+1/6+1/10+...+2/x.(x-1)=2019/2021
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{2021}\)
<=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)
<=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2021}\)
<=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4042}\)
<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{2042}\)
<=> \(\frac{1}{x+1}=\frac{1}{2021}\)
<=> x + 1 = 2021
<=> x = 2020
Có phải là bình 6a3 học trường THCS Nguyễn Trãi đúng không
tìm số tự nhiên x biết: 1/3+1/6+1/10+...+2/x(x+1)=2013/2015
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\cdot\left(x+1\right)}=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}:2\)
\(\Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}-\frac{1}{2}\)
\(\Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\Rightarrow x+1=2015\Rightarrow x=2014\)
Tìm số tự nhiên x biết rằng :1/3+1/6+1/10+...+2/x(x+1)=1999/2001
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{1999}{2001}\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{2001}:2\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}:2=\frac{1}{2001}\Rightarrow x+1=2001\Rightarrow x=2000\)
Tìm số tự nhiên x biết rằng : 1/3 +1/6 +1/10 + ... + 2/x(x+1) = 2007/2009
ta có: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2.3 + 2/3.4 +.......2/x(x+1) = 2(1/2.3 +1/3.4 +.....+1/x(x+1)) = 2.(1/2-1/3+1/3-1/4+....+1/x-1/(x+1))= 2.(1/2-1/(x+1)) = 1-2/(x+1)
giải 1-2/(x+1) = 2007/2009 ta được x=2008