Những câu hỏi liên quan
LD
Xem chi tiết
PH
28 tháng 12 2016 lúc 10:09

\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)

\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)

vì \(\left(x-y+1\right)^2\ge0\)

\(\left(y-4\right)^2\ge0\)

nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)

dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

vậy gtnn của bt là 2016 khi x=3;y=4

đề này của sở giáo dục và đào tạo tỉnh hà nam

Bình luận (0)
H24
27 tháng 12 2016 lúc 18:34

mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam

Bình luận (0)
DN
Xem chi tiết

hoc tot de lam lien doi nho chua.

Bình luận (0)
H24
7 tháng 4 2018 lúc 15:18

\(A=2x^2+y^2-2xy-2x+3\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)

\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

Vậy Min A = 2 khi x=y=1

Bình luận (0)
H24
7 tháng 4 2018 lúc 15:30

\(B=x^2-2xy+2y^2+2x-10y+17\)

\(B=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]-8y+y^2+16\)

\(B=\left(x-y+1\right)^2+\left(y^2-8y+16\right)\)

\(B=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà \(\left(x-y+1\right)^2\ge0\forall x;y\)

       \(\left(y-4\right)^2\ge0\forall y\)

\(\Rightarrow B\ge0\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy Min B = 0 khi (x;y)=(3;4)

Bình luận (0)
HL
Xem chi tiết
H9
15 tháng 10 2023 lúc 11:01

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

Bình luận (0)
NT
Xem chi tiết
HL
Xem chi tiết
TC
15 tháng 10 2023 lúc 11:19

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)

\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)

Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Bình luận (0)
MA
Xem chi tiết
AH
5 tháng 11 2023 lúc 20:29

Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$

$=(x^2-2xy+y^2)+3y^2-2x-10y+3$

$=(x-y)^2-2(x-y)+3y^2-12y+3$

$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$

$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$

$\Rightarrow A\leq 10$

Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$

$\Leftrightarrow y=2; x=1$

Bình luận (0)
HN
Xem chi tiết
TL
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
OO
Xem chi tiết