Những câu hỏi liên quan
PB
Xem chi tiết
CT
18 tháng 12 2017 lúc 6:30

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có: AH + HD = AD

CG + GB = CB

Mà AD = CB ( vì ABCD là hình bình hành).

DH = GB ( giả thiết)

Suy ra: AH = CG.

Xét ∆ AEH và  ∆ CFG:

AE = CF (gt)

∠ A = ∠ C (tính chất hình bình hành)

AH = CG ( chứng minh trên).

Do đó:  ∆ AEH =  ∆ CFG (c.g.c)

⇒ EH = FG

Xét  ∆ BEG và  ∆ DFH, ta có:

BG = DH (gt)

∠ B =  ∠ D (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF nên AB – AE = CD – CF hay BE = DF )

Do đó:  ∆ BEG =  ∆ DFH (c.g.c) ⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 9 2019 lúc 2:08

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là'giao điểm của AC và BD, ta có:

OA = OC (tính chất hình bình hành) (1)

Xét hai tam giác vuông AEO và CFO, ta có:

∠ (AEO) =  ∠ (CFO) = 90 0

OA = OC (chứng minh trên)

∠ (AOE) = (COF) (đối đỉnh)

Do đó ∆ AEO = CFO (cạnh huyền, góc nhọn)

⇒ OE = OF (2)

Từ (1) và (2) suy ra tứ giác AECF là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Bình luận (0)
NT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
HM
8 tháng 9 2023 lúc 22:02

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AD = BC\); \(AD\) // \(BC\)

Mà \(E\), \(F\) là trung điểm của \(AD\), \(BC\) (gt)

Suy ra \(AE = ED = BF = FC\)

Xét tứ giác \(EBFD\) ta có:

\(ED = FB\) (cmt)

\(ED\) // \(BF\) (do \(AD\) // \(BC\))

Suy ra \(EDFB\) là hình bình hành

b) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\) và \(BD\)

Mà \(DEBF\) là hình bình hành (gt)

Suy ra \(O\) cũng là trung điểm của \(EF\)

Suy ra \(E\), \(O\), \(F\) thẳng hàng

Bình luận (0)
NB
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 3 2018 lúc 9:07

Giải bài 47 trang 93 Toán 8 Tập 1 | Giải bài tập Toán 8

a)+ ABCD là hình bình hành

⇒ AD // BC và AD = BC.

⇒ ∠ADH = ∠CBK (Hai góc so le trong).

Hai tam giác vuông AHD và CKB có:

    AD = BC

    ∠ADH = ∠CBK

⇒ ΔAHD = ΔCKB (cạnh huyền, góc nhọn)

⇒ AH = CK

+ AH ⊥ BD; CK ⊥ BD ⇒ AH // CK

Tứ giác AHCK có AH // CK, AH = CK nên là hình bình hành.

b) Hình bình hành AHCK có O là trung điểm HK

⇒ O = AC ∩ HK ⇒ A, C, O thẳng hàng.

Bình luận (0)
MD
Xem chi tiết
PM
Xem chi tiết
NT
31 tháng 8 2021 lúc 23:22

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(CN=ND=\dfrac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=ND

Xét ΔMAP và ΔNCQ có 

MA=CN

\(\widehat{A}=\widehat{C}\)

AP=CQ

Do đó: ΔMAP=ΔNCQ

b: Ta có: BQ+CQ=BC

AP+DP=AD

mà BC=AD

và CQ=AP

nên BQ=DP

Xét ΔMBQ và ΔNDP có

MB=ND

\(\widehat{B}=\widehat{D}\)

BQ=DP

Do đó: ΔMBQ=ΔNDP

Bình luận (0)