Những câu hỏi liên quan
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:35

a) \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \)

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \) ta được

\(3{x^2} - 6x + 1 =  - 2{x^2} - 9x + 1\)

\( \Leftrightarrow 5{x^2} + 3x = 0\)

\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)

b) \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \)

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \) , ta được

\(2{x^2} - 3x - 5 = {x^2} - 7\)

\( \Leftrightarrow {x^2} - 3x + 2 = 0\)

\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)

 Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

Bình luận (0)
TL
Xem chi tiết
TM
24 tháng 4 2022 lúc 21:07

a) \(\dfrac{3}{x-7}+\dfrac{2}{x+7}=\dfrac{5}{x^2-49}\)

(ĐKXĐ: x khác 7; x khác -7)

<=>\(\dfrac{3.\left(x+7\right)}{\left(x-7\right).\left(x+7\right)}+\dfrac{2.\left(x-7\right)}{\left(x+7\right).\left(x-7\right)}=\dfrac{5}{\left(x+7\right).\left(x-7\right)}\)

=> 3x + 21 + 2x - 14 = 5

<=> 3x + 2x = 5 + 14 - 21

<=> 5x = -2

<=> x = \(\dfrac{-2}{5}\)

Vậy S = { \(\dfrac{-2}{5}\) }

Bình luận (0)
TM
24 tháng 4 2022 lúc 21:12

b) \(\dfrac{2x-1}{3}-\dfrac{x+3}{2}>1+\dfrac{5x}{6}\)

<=> \(\dfrac{2.\left(2x-1\right)}{3.2}-\dfrac{3.\left(x+3\right)}{3.2}>\dfrac{1.6}{6}+\dfrac{5x}{6}\)

=> 4x - 2 - 3x - 9 > 6 + 5x

<=> 4x - 3x - 5x > 6 + 9 + 2

<=> -4x > 17

<=> \(\dfrac{-17}{4}\)

Vậy S = { \(\dfrac{-17}{4}\) }

Bình luận (0)
NQ
Xem chi tiết
NT
6 tháng 3 2021 lúc 20:39

a) Ta có: \(\left|x^2-x+2\right|-3x-7=0\)

\(\Leftrightarrow\left|x^2-x+2\right|=3x+7\)

\(\Leftrightarrow x^2-x+2=3x+7\)(Vì \(x^2-x+2>0\forall x\))

\(\Leftrightarrow x^2-x+2-3x-7=0\)

\(\Leftrightarrow x^2-4x-5=0\)

\(\Leftrightarrow x^2-5x+x-5=0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

Vậy: S={5;-1}

Bình luận (1)
H24
Xem chi tiết
NT
28 tháng 6 2023 lúc 20:30

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

Bình luận (0)
SB
Xem chi tiết
VP
9 tháng 1 2023 lúc 13:00

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

Bình luận (0)
QN
9 tháng 1 2023 lúc 20:17

a. 3(x-2)-10=5(2x + 1)

<=> 3x - 6 - 10 = 10x + 5

<=> 3x - 10x = 5 + 6 + 10

<=> -7x = 21

<=> x = -3

b. 3x + 2=8 -2(x-7)

<=> 3x + 2 = 8 - 2x + 14

<=> 3x + 2x = 8 + 14 - 2

<=> 5x = 20

<=> x = 4

c. 2x-(2+5x)= 4(x + 3)

<=> 2x - 2 - 5x = 4x + 12

<=> 2x - 5x - 4x = 12 + 2

<=> -7x = 14

<=> x = -2

d. 5-(x +8)=3x + 3(x-9)

<=> 5 - x - 8 = 3x + 3x - 27

<=> -x - 3x - 3x = -27 + 8 - 5

<=> -7x = -24

<=> x = 24/7

e. 3x - 18 + x= 12-(5x + 3)

<=> 3x - 18 + x = 12 - 5x - 3

<=> 3x + x - 5x = 12 - 3 + 18

<=> -x = 27

<=> x = - 27

Bình luận (0)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:23

a) \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \)

\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)

\( \Rightarrow x =  - \frac{1}{4}\) và \(x = \frac{5}{2}\)

Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12}  = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình

Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)

b) \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)

\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)

\( \Rightarrow x =  - 3\) và \(x = 4\)

Thay vào phương trình \(\sqrt {{x^2} + x - 42}  = \sqrt {2x - 30} \)  ta thấy  không có nghiệm nào thỏa mãn

Vậy phương trình đã cho vô nghiệm

c) \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \)

\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)

\( \Rightarrow x =  - 1\) và \(x = 3\)

Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình

Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1}  = \sqrt {{x^2} + 2x + 5} \) là \(x =  - 1\) và \(x = 3\)

d) \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\)

\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1}  = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)

\( \Rightarrow x =  - 4\) và \(x = \frac{1}{2}\)

Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1}  - \sqrt {7{x^2} + 2x - 5}  = 0\) ta thấy chỉ có nghiệm \(x =  - 4\) thỏa mãn phương trình

Vậy nghiệm của phương trình trên là \(x =  - 4\)

Bình luận (0)
H24
Xem chi tiết
MP
15 tháng 8 2023 lúc 19:54

\(a,2^{3x-1}=2^{-\left(x+1\right)}\Rightarrow3x-1=-\left(x+1\right)\Rightarrow x=\dfrac{1}{2}\)

\(b,ln\left(2e^{2x}\right)=ln5\)

\(\Rightarrow ln2+lne^{2x}=ln5\)

\(\Rightarrow ln2+2x=ln5\)

\(\Rightarrow2x=ln5-ln2=ln\dfrac{5}{2}\)

Như vậy \(x=\dfrac{1}{2}ln\dfrac{5}{2}\)

Bình luận (0)
TL
Xem chi tiết
TT
3 tháng 2 2021 lúc 10:46

Bài 1: Giải các phương trình sau:

a) 3(2,2-0,3x)=2,6 + (0,1x-4)

<=> 6.6 - 0.9x = 2,6 + 0,1x - 4

<=> - 0.9x - 0,1x = -6.6 -1,4

<=> -x = -8

<=> x = 8

Vậy x = 8

b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)

<=> 3,6 - x - 0,5 = x - 5,5 + x

<=> - x - 3,1 = -5,5

<=> - x = -2.4

<=> x = 2.4

Vậy  x = 2.4

Bình luận (0)
DP
Xem chi tiết
H24
Xem chi tiết
TM
23 tháng 9 2023 lúc 10:03

(a) Điều kiện: \(\left\{{}\begin{matrix}x+1\ge0\\x-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x>5\end{matrix}\right.\Rightarrow x>5\).

Phương trình tương đương: \(\sqrt{x+1}=2\sqrt{x-5}\)

\(\Leftrightarrow x+1=4\left(x-5\right)\Leftrightarrow x=7\left(TM\right)\).

Vậy: \(S=\left\{7\right\}.\)

 

(b) Phương trình tương đương: \(x^2-1=8\)

\(\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\).

Vậy: \(S=\left\{\pm3\right\}\)

Bình luận (0)
NT
23 tháng 9 2023 lúc 9:56

a: ĐKXĐ: x+1>=0 và x-5>0

=>x>5

\(\dfrac{\sqrt{x+1}}{\sqrt{x-5}}=2\)

=>\(\sqrt{\dfrac{x+1}{x-5}}=2\)

=>\(\dfrac{x+1}{x-5}=4\)

=>4x-20=x+1

=>3x=21

=>x=7

b: ĐKXĐ: \(x\in R\)

\(\sqrt[3]{x^2-1}=2\)

=>x^2-1=8

=>x^2=9

=>x=3 hoặc x=-3

Bình luận (0)