số chính phương có 3 chữ số là
Bài 2. Tìm tất cả số tự nhiên n để 3. 5^n + 13 là số chính phương.
Bài 3. Tìm tất cả số tự nhiên n để n! +2024 là số chính phương. Bài 4. Tìm tất cả số chính phương có bốn chữ số, trong đó có a) Một chữ số 0, một chữ số 2, một chữ số 3, một chữ số 4. b) Một chữ số 0, một chữ số 2, một chữ số 4, một chữ số 7.Cho một số chính phương có 4 chữ số. Biết rằng chữ số tận cùng của nó là số nguyên tố, tổng các chữ số của nó là số chính phương và căn bậc hai của nó cũng có tổng các chữ số là số chính phương. Vậy số đã cho là ...
GIÚP MK NHA MẤY BN<3<3
Câu 1:Tìm số chính phương abcd biết ab-cd=1
Câu 2:Có bao nhiêu số có 2 chữ số sao cho tích của chúng là 1 số chính phương
Câu 3:Tìm số chính phương có 4 chữ số biết mỗi chữ số giảm 1 đơn vị thì đc số mới cũng là số chính phương
Bài 1. Chứng minh rằng tổng của 4 số chính phương liên tiếp không thể là một số chính phương.
Bài 2. Chứng minh rằng tổng của 5 số chính phương liên tiếp không thể là một số chính phương.
Bài 3. Cho bốn chữ số 0,2,3,4. Tìm số chính phương có 4 chữ số được tạo bởi cả 4 chữ số trên.
Bài 4. Tìm số nguyên tố p thỏa mãn
a) p 2 + 62 cũng là số nguyên tố.
b) p 2 + 14 và p 2 + 6 cũng là số nguyên tố.
1,
a, Tìm số chính phương có 4 chữ số chia hết cho 147 và có chữ số tận cùng là 9
b, Tìm số chính phương có 3 chữ số chia hết cho 56
c, Tìm số chính phương có 4 chữ số chia hết cho 33
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
tìm số chính phương có 3 chữ số thỏa mãn: nếu đổi chữ số hàng chục và chữ số hàng đơn vị cho nhau ta được số mới là số chính phương liền sau số chính phương đã cho
1. Tìm n biết 1!+2!+3!+.............+n! là 1 số chính phương
2. Tìm số chính phương có 4 chữ số biết nếu thêm vào mỗi chữ số của số đó ta được số mới là 1 số chính phương có 4 chữ số
3. Tìm số chính phương có 4 chữ số biết chữ số hàng nghìn = chữ số hàng đơn vị và số đó viết dưới dạng (5n+4)2
ai làm xong trước tớ tick cho
CMR 1 số chính phương có tận cung là 5 thì chữ số hàng chục là chữ số 2
CMR 1 số chính phương có tân cùng là 6 thì chữ số hàng chục là chữ số lẻ
CMR 1 số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn
CMR 1 số chính phương có tận cùng là 0 thì tận cùng bằng chẵn chữ số 0
Lời giải:
1.
Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$
Đặt \(a=\overline{A5}\)
\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)
\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$
--------------------
2.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.
Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)
Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))
Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.
3.
Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.
Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)
Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$
$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))
Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.
-----------------
4.
Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$
Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)
\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)
Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)
Bài 1: Tìm số tự nhiên n có 2 chữ số biết rằng 2.n+1 và 3.n+1 là các số chính phương.
Bài 2: Tìm số tự nhiên n sao cho S = 1!+2!+3!+...+ n! là số chính phương
Bài 3: Tìm số chính phương có 4 chữ số gồm cả 4 chữ số 0;2;3;5
Câu 1 : Chứng minh một số chính phương có tận cùng là 0 thì phải tận cùng bằng chẵn chữ số 0.
Câu 2 : Chứng minh một số chính phương có số ước là một số lẻ và ngược lại .
Câu 3 : Chứng minh rằng một số chính phương có tận cùng là 5 thì chữ số hàng chục là chữ số 2.
Câu 4 : Chứng minh rằng một số chính phương có tận cùng là 6 thì chữ số hàng chục là chữ số lẻ.
Câu 5 : Chứng minh rằng một số chính phương có tận cùng là 4 thì chữ số hàng chục là chữ số chẵn.