1/6+1/12+1/20+...+1/380....0.4
1/5+1/12+1/20+...+1/380........0.4
1/6+1/12+1/20+..+1/380
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{380}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...............+\frac{1}{19.20}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..............+\frac{1}{19}-\frac{1}{20}\)
=\(\frac{1}{2}-\frac{1}{20}\)
=\(\frac{9}{20}\)
1/6+1/12+1/20+.....+1/380............0,4
1/2.3 + 1/3.4 + 1/4.5 + ...... + 1/tự tính
1/2 - 1/3 + 1/3 - 1/4 + 1/4 -1/5 + .......+ 1/...-1 - 1/.....1
1/2 - 1/......1
N = \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{380}\)
\(N=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{19}{20}\)
Hãy so sánh :
1/ 6 + 1/ 12 + 1/ 20 + ... + 1/ 380 ........................ 0 , 4
S= 1 phần 2 cộng 1 phần 6 cộng 1 phần 12 cộng 1 phần 20 ... 1 phần 380
`S=1/2 +1/6 +1/12 +1/20 +...+1/380`
`=1/(1.2)+1/(2.3) +1/(3.4)+1/(4.5)+...+1/(19.20)`
`=1-1/2 +1/2 -1/3 +1/3-1/4 +1/4 -1/5+....+1/19-1/20`
`=1-1/20=20/20 -1/20 =19/20`
1 phần 2 cộng 1 phần 6 cộng 1 phần 12 cộng 1 phần 20 cộng .... cộng 1 phần 380
1/2+1/6+1/12+1/20+...+1/380
=1/1.2+ 1/2.3+ 1/3.4+ 1/4.5+...+ 1/19.20
= 1/1-1/2+ 1/2-1/3+ 1/3-1/4+ 1/4-1/5+...+1/19-1/20
=1-1/29
=29/29-1/29
= 28/29
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{380}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{19\times20}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{29}\)
\(=\frac{28}{29}\)
a.A=1 1/2 x 1 1/3 x 1 1/4 x 1 1/5 x...x1 1/2020 x 1 1/2021
b.B=1 1/2 + 1 1/6 + 1 1/12 +1 1/20+ ... + 1 1/380 + 1 1/420
c.C=1 6/8 x 1 6/18 x 1 6/30 x 1 6/44 x ... x 1 6/10700
1\(\frac{1}{12}-\frac{1}{20}-...-\frac{1}{380}=?\)
\(\frac{1}{12}-\frac{1}{20}-...-\frac{1}{380}\)
\(=\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{19.20}\)
\(=\left(\frac{1}{3}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{6}\right)-...-\left(\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{3}-\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+\frac{1}{6}-...-\frac{1}{19}+\frac{1}{20}\)
\(=\frac{1}{3}-\frac{1}{4}-\frac{1}{4}+\frac{1}{20}\)
\(=-\frac{7}{60}\)