Những câu hỏi liên quan
PB
Xem chi tiết
CT
15 tháng 10 2019 lúc 10:12

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 9 2019 lúc 5:54

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 3 2018 lúc 6:49

+) Thay x = 5 vào phương trình  2 x − 3 = x + 2 x − 4  ta được

2.5 − 3 = 5 + 2 5 − 4   ⇔ 7 = 7 1 = 7

Vậy 5 là nghiệm của phương trình  2 x − 3 = x + 2 x − 4 khẳng định (I) đúng.

+) Tập nghiệm của phương trình 7 – x = 2x – 8 là x = 5 là khẳng định sai vì kết luận x = 5 không phải là tập nghiệm.

+) Ta có: 10 - 2x = 0 ⇔ 2x = 10 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {5}.

Do đó khẳng định (III) là đúng.

Vậy có hai mệnh đề đúng.

Đáp án cần chọn là: C

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 6 2019 lúc 12:16

Chọn D

i) Đúng.

ii) Sai, ví dụ: Xét hàm số

Ta có f ' x = x 2 - 2 x + 1 .

Cho f ' ( x ) ⇔ x = 1 .

Khi đó phương trình f ' ( x ) = 0 có nghiệm x 0 = 1 nhưng đây là nghiệm kép nên không đổi dấu khi qua x 0 .

iii) Sai, vì: Thiếu điều kiện f ' ( x ) = 0  chỉ tại một số hữu hạn điểm.

Vậy có 1 mệnh đề đúng.

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 7 2018 lúc 9:00

Đáp án D

Định lí: “Nếu hàm số y = f x  liên tục trên a ; b  và f a . f b < 0  thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho f c = 0 ”.

Mệnh đề 1: SAI ở giả thiết (a;b).

Mệnh đề 2: Nếu hàm số y=f(x) liên tục trên  a ; b

và f a . f b < 0 thì tồn tại ít nhất một điểm c ∈ a ; b  sao cho c hay  f x = 0 là nghiệm của phương trình f(x)=0 nên mệnh đề 2 ĐÚNG.

Mệnh đề 3: Nếu hàm số y=f(x) liên tục, đơn điệu trên a ; b và f a . f b < 0  thì đồ thị hàm số y=f(x) cắt trục Ox tại duy nhất một điểm thuộc khoảng (a;b) nên f(x)=0 có nghiệm duy nhất trên (a;b). Do đó mệnh đề 3 ĐÚNG

Bình luận (0)
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 10:47

a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.

Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)

b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.

Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x =  - 1\) và \(x =  - 2\).

c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.

Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).

d) \(\overline D \): “Số 2 025 không chia hết cho 15”.

Sai vì 2025 = 15. 135, chia hết cho 15.

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 10:47

a) Vì \({13^2} - 24.13 + 143 = 0\) nên \(x = 13\) là nghiệm của phương trình \( \Rightarrow 13 \in S\)

Vậy mệnh đề “\(13 \in S\)” đúng.

b) Vì \({11^2} - 24.11 + 143 = 0\) nên \(x = 11\) là nghiệm của phương trình \( \Rightarrow 11 \in S\)

Vậy mệnh đề “\(11 \notin S\)” sai.

c) Ta có:

 \(\begin{array}{l}{x^2} - 24x + 143 = 0\\ \Leftrightarrow {x^2} - 11x - 13x + 11.13 = 0\\ \Leftrightarrow x.\left( {x - 11} \right) - 13.\left( {x - 11} \right) = 0\\ \Leftrightarrow \left( {x - 11} \right).\left( {x - 13} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 11\\x = 13\end{array} \right.\end{array}\)

Tập nghiệm của phương trình là \(S=\{11;13\}\)

Phương trình có 2 nghiệm hay \(n\;(S) = 2\)

=> Mệnh đề “\(n\;(S) = 2\)” đúng.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2019 lúc 3:16

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 10 2018 lúc 14:11

Đáp án C

Dựa vào đáp án, ta thấy rằng

(1) Đường thẳng f x = 0 ⇔ 3 2 x - 2 . 3 x = 0 ⇔ 3 x = 2 ⇔ x = log 3 2 ⇒ 1  đúng.

(2) Bất phương trình f x ≥ - 1 ⇔ 3 2 x - 2 . 3 x + 1 ≥ 0 ⇔ 3 x - 1 2 ≥ 0 , ∀ x ∈ ℝ . Nên f x ≥ - 1  có vô số nghiệm ⇒ 2  sai.

(3) Bất phương trình f x ≥ 0 ⇔ 3 x 2 - 2 . 3 x ≥ 0 ⇔ 3 x ≥ 2 ⇔ x ≥ log 3 2 ⇒ 3  sai.

(4) Đường thẳng f(x) = 0 chỉ có 1 nghiệm duy nhất ⇒ 4  sai

Bình luận (0)