Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số đồng biến trên khoảng 0 ; π 4
A. m ≤ 0 hoặc 1 ≤ m < 2
B. m ≤ 0
C. 1 ≤ m < 2
D. m ≥ 2
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=sinx+cosx+mx đồng biến trên khoảng - ∞ ; + ∞
A . - 2 ≤ m ≤ 2
B . m ≤ - 2
C . - 2 < m < 2
D . m ≥ 2
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = tan x − 2 tan x − m đồng biến trên khoảng 0 ; π 4
A. m ≤ 0 hoặc 1 ≤ m < 2
B. m ≤ 0
C. 1 ≤ m < 2
D. m ≥ 2
Đáp án B
Ta có: y ' = 3 x 2 + 2 m + 1 x + 3
Hàm số đồng biến trên
R ⇔ y ' ≥ 0 ∀ x ∈ ℝ ⇔ a y ' = 3 > 0 Δ ' y ' = m + 1 2 − 9 ≤ 0 ⇔ − 3 ≤ m + 1 ≤ 3
⇔ − 4 ≤ m ≤ 2.
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = tan x - 2 tan x - m đồng biến trên khoảng 0 ; π 4 ?
A. 1 ≤ m < 2
B. m ≤ 0 ; 1 ≤ m < 2
C. m ≥ 2
D. m ≤ 0
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = - 2 tan x - 1 tan x + m đồng biến trên khoảng ( 0 ; π 4 ) .
A..
B..
C..
..
Chọn B
Vì trên thì nhận tất cả các giá trị thuộc khoảng nên hàm số xác trên khi . Ta có .
. Vậy .
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x 3 - 6 x 2 + m x + 1 đồng biến trên khoảng ( 0 ; + ∞ ) ?
A. m ≤ 0
B. m ≤ 12
C. m ≥ 0
D. m ≥ 12
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x 3 - 6 x 2 + m x + 1 đồng biến trên khoảng (0;+∞)?
A. m ≤ 0.
B. m ≤ 12.
C. m ≥ 0.
D. m ≥ 12.
Chọn D.
Cách 1: Tập xác định: D = R. Ta có
+) Trường hợp 1:
+) Trường hợp 2: Hàm số đồng biến trên (0; +∞) ⇔ y' = 0 có hai nghiệm x1; x2 thỏa mãn x1 < x2 ≤ 0(*)
-) Trường hợp 2.1: y’ = 0 có nghiệm x = 0 suy ra m = 0.
Nghiệm còn lại của y’ = 0 là x = 4 (không thỏa (*))
-) Trường hợp 2.2: y’ = 0 có hai nghiệm x1; x2 thỏa mãn:
Kết hợp 2 trường hợp, vậy m ≥ 12
Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = tan x - 2 tan x - m đồng biến trên khoảng 0 ; π 4 ?
A. 1≤ m < 2.
B. m≤ 0 .
C. m> 2.
D. Cả A và B đúng
+) Điều kiện tanx ≠ m
Điều kiện cần để hàm số đồng biến trên (0; π/4) là m ∉ (0;1)
+) đạo hàm:
y ' = ( tan 2 x + 1 ) ( 2 - m ) ( tan x - m ) 2 = 2 - m cos 2 x . ( tan x - m ) 2
+) Ta thấy:
1 cos 2 x . ( tan x - m ) 2 > 0 ; ∀ m ∉ ( 0 ; 1 )
+) Để hàm số đồng biến trên (0; π/4)
⇔ y ' > 0 m ∉ ( 0 ; 1 ) ⇔ - m + 2 > 0 m ≤ 0 ; m ≥ 1 ⇔ m ≤ 0 h o ặ c 1 ≤ m < 2
Chọn D.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = sinx+ cosx+ mx đồng biến trên ℝ
A.
B.
C.
D.
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = sinx + cosx + mx đồng biến trên ℝ
A. - 2 ≤ m ≤ 2
B. m ≤ - 2
C. - 2 < m < 2
D. m ≥ 2
Đáp án D
YCBT: y ' = cos x - sin x + m ≥ 0 với mọi x ∈ ℝ ⇔ m ≥ sin x - cos x = f x với x ∈ ℝ .
Mà ta có: f x = sin x - cos x = 2 x - π 4 ⇒ - 2 ≤ f x ≤ 2 ⇒ m ≥ 2