Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = x + 1 x 3 - 3 x 2 - m có đúng một tiệm cận đứng.
A.Mọi m
B.
C.
D.
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{\sqrt{1-x}}{x-m}\) có tiệm cận đứng .
ĐKXĐ: \(x\le1\)
Hàm có tiệm cận đứng khi và chỉ khi phương trình:
\(x-m=0\) có nghiệm \(x< 1\)
\(\Leftrightarrow m< 1\)
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = x + 1 m x 2 + 1 có hai tiệm cận ngang
A. m < 0
B. m = 0
C. m > 0
D. Không có giá trị thực của m
Tìm tất cả các giá trị thực của tham số ,m sao cho đồ thị của hàm số y = x + 1 m x 2 + 1 có hai tiệm cận ngang.
A.m<0
B.m>0
C.m=0
D.Không có giá trị thực nào của m thỏa mãn yêu cầu đề bài.
Điều kiện:mx2+1>0.
- Nếu m=0 thì hàm số trở thành y=x+1 không có tiệm cận ngang.
- Nếu m<0 thì hàm số xác định ⇔ - 1 - m < x < 1 - m
Do đó, lim x → ± ∞ y không tồn tại nên đồ thị hàm số không có tiệm cận ngang.
- Nếu m>0 hì hàm số xác định với mọi x.
Suy ra đường thẳng y = 1 m là tiệm cận ngang của đồ thị hàm số khi x → + ∞ .
Suy ra đường thẳng y = - 1 m là tiệm cận ngang của đồ thị hàm số.
Vậy m>0 thỏa mãn yêu cầu đề bài.
Chọn B.
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{5x-3}{x^2-2mx+1}\) không có tiệm cận đứng .
Do mẫu có bậc 2 còn tử bậc 1 \(\Rightarrow\)hàm không có tiệm cận đứng khi và chỉ khi phương trình \(x^2-2mx+1=0\) vô nghiệm
\(\Leftrightarrow\Delta'=m^2-1< 0\)
\(\Rightarrow-1< m< 1\)
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y = x + 1 m 2 x 2 + m − 1 có bốn đường tiệm cận.
A. m < 1 hoặc m>1
B. với mọi giá trị m
C. m > 0
D. m < 1 và m ≠ 0
Đáp án là D.
Đồ thị hàm số có bốn đường tiệm cận khi phương trình m 2 x 2 + m − 1 = 0 có hai nghiệm phân biệt khác -1 ⇔ m 2 ≠ 0 − m 2 m − 1 > 0 ⇔ m ≠ 0 m < 1 .
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số y = x + 1 x 3 - 3 x 2 - m có đúng một tiệm cận đứng.
A. m> 0
B. m < -4
C. m> 0 hoặc m ≤ - 4
D. m< 3
TH1 : Phương trình x3- 3x2-m=0 có một nghiệm đơn x= -1 và một nghiệm kép.
Phương trình x3- 3x2-m=0 có nghiệm x= -1 nên ( -1) 3-3( -1) 2-m=0 hay m= -4.
Với m= -4 phương trình trở thành
(thỏa mãn vì x= 2 là nghiệm kép).
TH2: Phương trình x3- 3x2-m=0 có đúng một nghiệm khác – 1 hay x3- 3x2= m có một nghiệm khác -1
Vậy với m> 0 hoặc m≤ - 4 thỏa mãn yêu cầu đề bài.
Chọn C.
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y = x 2 - x - m + 1 x - m không có tiệm cận đứng.
A. m = 1
B. m = ± 1
C. m = -1
D. m ≠ 1
Đáp án A.
Đồ thị hàm số không có tiệm cận đứng