Những câu hỏi liên quan
H24
Xem chi tiết
NT
31 tháng 1 2024 lúc 22:07

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp

=>\(\widehat{EFB}+\widehat{ECB}=180^0\)

mà \(\widehat{EFB}+\widehat{MFB}=180^0\)(hai góc kề bù)

nên \(\widehat{MFB}=\widehat{MCE}\)

Xét ΔMFB và ΔMCE có

\(\widehat{MFB}=\widehat{MCE}\)

\(\widehat{M}\) chung

Do đó: ΔMFB~ΔMCE
=>\(\dfrac{MF}{MC}=\dfrac{MB}{ME}\)

=>\(MF\cdot ME=MB\cdot MC\)

Bình luận (0)
NL
Xem chi tiết
BC
Xem chi tiết
QT
Xem chi tiết
BA
Xem chi tiết
DN
Xem chi tiết
TH
17 tháng 3 2021 lúc 20:55

1, Xét tứ giác AEHF có: \(\widehat{AFH}+\widehat{AEH}=90^o+90^o=180^o\)

Hai góc \(\widehat{AFH}\) và \(\widehat{AEH}\) đối nhau

\(\Rightarrow\) Tứ giác AEHF nội tiếp (dhnb tứ giác nt)

2, Xét tứ giác AEDB có: \(\widehat{AEB}\) = \(\widehat{ADB}\) = 90o 

Hai góc có đỉnh kề nhau cùng nhìn AB

\(\Rightarrow\) Tứ giác AEDB nội tiếp (dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{EBD}=\widehat{EAD}\) (2 góc nt cùng chắn 1 cung)

Xét \(\Delta\)HBD và \(\Delta\)CAD có: \(\widehat{HDB}=\widehat{CDA}=90^o\)

\(\widehat{HBD}=\widehat{CAD}\) (cmt)

\(\Rightarrow\) \(\Delta\)HBD ~ \(\Delta\)CAD (gg)

\(\Rightarrow\) \(\dfrac{HD}{CD}=\dfrac{BD}{AD}\) (tỉ số đồng dạng)

\(\Rightarrow\) DB.DC = DH.DA (đpcm)

Chúc bn học tốt!

Bình luận (0)
DN
Xem chi tiết
H24
Xem chi tiết
NT
10 tháng 5 2023 lúc 21:06

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

=>ΔCDA đồng dạng với ΔCEB

=>CD/CE=CA/CB

=>CD/CA=CE/CB; CD*CB=CA*CE
b: Xét ΔCDE và ΔCAB có

CD/CA=CE/CB

góc C chung

=>ΔCDE đồng dạng với ΔCAB

c: góc BEC=góc BFC=90 độ

=>BFEC nội tiếp

=>góc AEF=góc ABC=góc DEC

Bình luận (0)
LH
Xem chi tiết
MP
31 tháng 5 2023 lúc 20:46

Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.

Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.

Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.

Vì H là giao điểm của AD và BE, ta có AH  ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.

Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).

Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.

Vậy, H là trực tâm của tam giác ASM. 

Bình luận (1)