Cho đẳng thức A x 3 - 2 x 2 + x = 1 x 2 - x . Đa thức A là đa thức nào sau đây?
A. x
B. x - 1
C. x + 1
D. x 2 + 1
Câu1:Chứng minh đẳng thức
a) (x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
b) (x+y)(x+y+x)-2(x+1)(y+1)+2=x^2+y^2
c) Cho ab=1. Chứng minh đẳng thức a(b+1)+b(a+1)=(a+1)(b+1)
Câu 2: Tìm x biết (x-3)(x+x^2)+2(x-5)(x+1)-x^3=12
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
Cho đẳng thức\(\frac{\left(x+3\right)A}{x-3}\) =\(\frac{\left(x-1\right)B}{x^2-9}\)với x khác +- 3.Tìm 1 cặp đa thức A và B thỏa mãn đẳng thức đã cho
Câu 11: _VD_ Cho đẳng thức 4.(1/3 - x) + 1/2 = 5/6 + x. Số x thỏa mãn đẳng thức đã cho là gì
a) Tìm các số nguyên x, Thỏa mãn :
\(x^2+2xy+7.\left(x+y\right)+2y^2+10=0\)
b) Cho đẳng thức : f(x)=\(x^3-3x^2+3x-4\)
với giá trị nào của x thì giá trị của đẳng thức f(x) chia hết cho giá trị của đẳng thức \(x^2+2\)
b) Ta có:
\(f\left(x\right)=x^3-3x^2+3x-4\)
\(=x^3+2x-3x^2-6+x+2\)
\(=x\left(x^2+2\right)-3\left(x^2+2\right)+\left(x+2\right)\)
\(=\left(x-3\right)\left(x^2+2\right)+\left(x+2\right)\)
Để f(x) \(⋮\) x2 + 2 thì x + 2 \(⋮\) x2 + 2
Đến đây tự làm
Cho đẳng thức: A= 1/2 . (x^2) .y.(-2xy^2)^2 + 3.(x^2) y^3.(x^2.y^2)
Thu gọn đa thức A rồi tính giá trị của đa thức A tại x,y thỏa mãn:
(x-2)^18 + /y+1/ =0
\(A=\dfrac{1}{2}x^2\cdot y\cdot4x^2y^4+3x^2y^3\cdot x^2y^2\)
\(=2x^4y^5+3x^4y^5=5x^4y^5\)
Ta có: \(\left(x-2\right)^{18}+\left|y+1\right|=0\)
=>x-2=0 và y+1=0
=>x=2 và y=-1
\(A=5\cdot2^4\cdot\left(-1\right)^5=-80\)
Cho các số x, y thỏa mãn đẳng thức x^3 -9x^2y -10x^2 +x -9y =10
Tính giá trị nhỏ nhất của biểu thức A= x^2 +9y^2
tìm tập hợp A các số nguyên x sao cho -3<x<3 và thỏa mãn đẳng thức x*(3+x)=-2
Bài 1: Rút gọn : a^2+ac-b^2-bc/a^2-b^2. Chứng minh hằng đẳng thức : x/x^2-2x - x^2+4/x^3-4x - 1/x^2-2x = 1/x^2+2x.
Bài 2: Cho biểu thức : K = 3/x-3 - 6x/9-x^2 + x/x+3. Tìm giá trị nguyên của x để K nhận giá trị dương
Xét hằng đẳng thức: (x+1)^2 = x^2 +2x +1
Lần lượt cho x bằng 1;2;3;...;n rồi cộng từng vế n đẳng thức trên để tính giá trị của biểu thức S3= 1^3 + 2^3 + 3^3 +...+n^3
Viết biểu thức sau thành hằng đẳng thức
a. (x-3)^2 + 2(x-3)(x+2)+(x+2)^2
b. (x+5)^2 - (2x+10) (x - 6) + (x - 6)^2
a) \(\left(x-3\right)^2+2\left(x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(x-3+x+2\right)^2\)
\(=\left(2x-1\right)^2\)
Hằng đẳng thức: \(\left(a+b\right)^2=a^2+2ab+b^2\).
b) \(\left(x+5\right)^2-\left(2x+10\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left(x+5\right)^2-2\left(x+5\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left[\left(x+5\right)-\left(x-6\right)\right]^2\)
\(=11^2=121\)
Hằng đẳng thức: \(\left(a-b\right)^2=a^2-2ab+b^2\).
a.\(\left(x-3\right)^2+2\left(x-3\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left[\left(x-3\right)+\left(x+2\right)\right]^2\)
\(=\left(x-3+x+2\right)^2\)
\(=\left(2x-1\right)^2\)
b.\(\left(x+5\right)^2-\left(2x+10\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left(x+5\right)^2-2\left(x+5\right)\left(x-6\right)+\left(x-6\right)^2\)
\(=\left[\left(x+5\right)-\left(x-6\right)\right]^2\)
\(=\left(x+5-x+6\right)^2\)
Trả lời:
a, ( x - 3 )2 + 2 ( x - 3 ) ( x + 2 ) + ( x + 2 )2
= ( x - 3 + x + 2 )2
= ( 2x - 1 )2
b, ( x + 5 )2 - ( 2x + 10 ) ( x - 6 ) + ( x - 6 )2
= ( x + 5 )2 - 2 ( x + 5 ) ( x - 6 ) + ( x - 6 )2
= [ ( x + 5 ) - ( x - 6 ) ]2
= ( x + 5 - x + 6 )2
= 112
= 121