Những câu hỏi liên quan
LH
Xem chi tiết
LL
9 tháng 11 2021 lúc 8:13

1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)

2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)

Bình luận (1)
PB
Xem chi tiết
CT
10 tháng 2 2017 lúc 3:28

Điều kiện để phân thức xác định là x - 5 ≠ 0 ⇔ x ≠ 5

Bình luận (0)
PB
Xem chi tiết
CT
26 tháng 8 2017 lúc 4:17

Để phân thức xác định: 

Cách tìm điều kiện để phân thức được xác định cực hay, có đáp án | Toán lớp 8

Vậy điều kiện để phân thức xác định là x ≠ -2 và x ≠ 1

Bình luận (0)
NN
Xem chi tiết
NT
23 tháng 12 2023 lúc 9:42

Câu 5: B

Câu 6: 

a: ĐKXĐ: \(x-2\ne0\)

=>\(x\ne2\)

b: ĐKXĐ: \(x+1\ne0\)

=>\(x\ne-1\)

8:

\(A=\dfrac{x^2+4}{3x^2-6x}+\dfrac{5x+2}{3x}-\dfrac{4x}{3x^2-6x}\)

\(=\dfrac{x^2+4-4x}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{\left(x-2\right)^2}{3x\left(x-2\right)}+\dfrac{5x+2}{3x}\)

\(=\dfrac{x-2+5x+2}{3x}=\dfrac{6x}{3x}=2\)

7: 

\(\dfrac{8x^3yz}{24xy^2}\)

\(=\dfrac{8xy\cdot x^2z}{8xy\cdot3y}\)

\(=\dfrac{x^2z}{3y}\)

Bình luận (0)
TT
Xem chi tiết
TT
27 tháng 11 2021 lúc 20:33

giúp mk nhanh đi mn ới :>>>

Bình luận (0)
NG
Xem chi tiết
H24
6 tháng 1 2018 lúc 12:19

1) \(\frac{3}{x^2-4y^2}\)

\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)

Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)

2) \(\frac{2x}{8x^3+12x^2+6x+1}\)

\(=\frac{2x}{\left(2x+1\right)^3}\)

Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)

\(\Rightarrow2x+1\ne0\)

\(\Rightarrow x\ne-\frac{1}{2}\)

3) \(\frac{5}{2x-3x^2}\)

\(=\frac{5}{x\left(2-3x\right)}\)

Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)

Bình luận (0)
ST
Xem chi tiết
DH
27 tháng 12 2022 lúc 20:33

\(x\ne-2\)

Bình luận (0)
HT
Xem chi tiết
NT
21 tháng 12 2018 lúc 14:09

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

Bình luận (0)
H24
21 tháng 12 2018 lúc 19:02

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

Bình luận (0)
H24
21 tháng 12 2018 lúc 19:21

chết mk nhìn nhầm phần c bài 2 :

\(2,\left(\frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)

Để P xác định 

\(\Rightarrow2-x\ne0\Rightarrow x\ne2\)

\(2+x\ne0\Rightarrow x\ne-2\)

\(x^2-4\ne0\Rightarrow x\ne0\)

\(x^2-3x\ne0\Rightarrow x\ne3\)

b, \(P=\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2+x\right)\left(2-x\right)}+\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(P=\left[\frac{4+4x+x^2}{\left(2-x\right)\left(2+x\right)}-\frac{4x^2}{\left(2+x\right)\left(2-x\right)}-\frac{4-4x+x^2}{\left(2+x\right)\left(2-x\right)}\right].\frac{x\left(2-x\right)}{x-3}\)

\(P=\left[\frac{8x-4x^2}{\left(2-x\right)\left(2+x\right)}\right].\frac{x\left(2-x\right)}{x-3}=\frac{4x\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{x-3}\)

\(P=\frac{4x^2\left(2-x\right)}{\left(x-3\right)\left(2+x\right)}\)

d, ĐỂ \(p=\frac{8x^2-4x^3}{x^2-x-6}< 0\)

\(TH1:8x^2-4x^3< 0\)

\(\Rightarrow8x^2< 4x^3\)

\(\Rightarrow2< x\Rightarrow x>2\)

\(TH2:x^2-x-6< 0\Rightarrow x^2< x+6\)

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 8 2018 lúc 8:49

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 9:59

Bình luận (0)