tìm tất cả các số nguyên tố p có dạng n(n+1)(n+2):6+1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm tất cả các số nguyên tố p có dạng \(\dfrac{n\left(n+1\right)}{2}-1\left(n\ge1\right)\)
TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)
\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)
Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)
\(2k-1=1\Rightarrow k=1\)
Khi đó \(p=2\) (thỏa mãn)
TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))
\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)
Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)
Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)
Vậy \(p=\left\{2;5\right\}\)
Tìm tất cả các số nguyên tố P có dạng P = n^2 + 1. Trong đó n là số nguyên dương, biết rằng P không có nhiều hơn 19 số.
tìm tất cả các số nguyên tố p có dạng \(p=\frac{1}{2}n\left(n+1\right)-1\)
Ta có \(p=\frac{1}{2}n\left(n+1\right)-1=\frac{n^2+n-2}{2}=\frac{\left(n-1\right)\left(n+2\right)}{2}\). Vì \(p\) là số nguyên tố, nên \(n\) là số nguyên lớn hơn \(1\).
Với \(n=2\to p=2\) thỏa mãn.
Với \(n=3\to p=5\) thỏa mãn
Với \(n\ge4:\) Nếu \(n\) là số chẵn thì \(p=\left(n-1\right)\cdot\frac{n+2}{2}\) là tích của hai số lớn hơn \(1\) nên \(p\) không phải là số nguyên tố. Nếu \(n\) là số lẻ, thì \(p=\frac{n-1}{2}\cdot\left(n+2\right)\) là tích của hai số lớn hơn \(1\) nên \(p\) không phải là số nguyên tố.
Vậy chỉ có 2 số nguyên tố thỏa mãn là \(p=2,5.\)
tìm tất cả số nguyên tố p có dạng \(p\dfrac{\left(n-1\right)\left(n+2\right)}{2}\)
tìm tất cả các số nguyên tố dạng \(\frac{1}{6}\times n\times\left(n+1\right)\times\left(n+2\right)+1\), với n là số tự nhiên n>=1
Tìm tất cả các số nguyên tố có dạng \(\frac{n\left(n+1\right)}{2}-1\)với \(n\ge1\)
Tìm tất cả những số nguyên tố p có dạng: \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\left(n\ge1\right)\)
\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)
Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)
Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)
Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)
Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)
cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2
cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ
Thạch ơi, cái bài này mk giải như thế đúng k?
quên, mk sửa lại 1 tí nhé
cứ như vậy tiếp dần thì ta chỉ có n=1;4 thì p mới là số nguyên tố, thì p=2;11
Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2;11
Tìm tất cả các số nguyên tố p có dạng \(\frac{n\left(n+1\right)}{2}-1\left(n\ge1\right)\)
Giúp mk nốt bài này
\(p=\frac{n\left(n+1\right)}{2}-1=1+2+...+n-1=2+3+...+n\)
\(p=2+3+...+n\)
\(p=n+n-1+...+2\)
\(2p=\left(n+2\right)+\left(n+2\right)+...+\left(n+2\right)=\left(n-1\right)\left(n+2\right)\)
\(p=\frac{\left(n-1\right)\left(n+2\right)}{2}\)
- Nếu \(n\)chẵn: \(p\)chia hết cho \(n-1\)và \(\frac{n+2}{2}\)
nên là số nguyên tố khi \(\orbr{\begin{cases}n-1=1\\\frac{n+2}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(tm\right)\\n=0\left(l\right)\end{cases}}\)suy ra \(p=2\).
- Nếu \(p\)lẻ: \(p\)chia hết cho \(\frac{n-1}{2}\)và \(n+2\)
do đó là số nguyên tố khi \(\orbr{\begin{cases}\frac{n-1}{2}=1\\n+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\left(tm\right)\\n=-1\left(l\right)\end{cases}}\)suy ra \(p=5\).
Vậy \(p=2\)hoặc \(p=5\).
1.tìm tất cả những giá trị n thuoocjN sao cho 3^n+4n+1 chia ết cho 8
2.cho p và 8p^2+1 là những số nguyên tố.CMR 8p^2+2p+1cungx là 1 số nguyên tố
3.tìm tất cả những số nguyên tố có dạng (2^(2^n)) +5 n thuộc N
4.hãy tìm số ngto p sao cho p^2 là uoc của (5^(p^2)) +1