Những câu hỏi liên quan
PB
Xem chi tiết
CT
9 tháng 7 2019 lúc 4:58

Bình luận (0)
TT
Xem chi tiết
TT
14 tháng 3 2022 lúc 19:57

undefinedundefined

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 10 2019 lúc 2:54

Đáp án A

Điều kiện  x ≥ − 2

Đặt  t = x + 2 t ≥ 0 ⇒ x = t 2 − 2

Khi đó phương trình tương đương

5 − t 2 + t + 2 − 5 m = 0 ⇔ m = 5 − t 2 + t + 1

Xét hàm số  f t = 5 − t 2 + t + 1 ; t ≥ 0.

Ta có:

f ' t = − 2 t + 1 5 − t 2 + t + 1 ; f ' t = 0 ⇔ t = 1 2

Từ bảng biến thiên ra suy ra phương trình có nghiệm thì  0 < m ≤ 5 5 4

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 6 2018 lúc 7:37

Đáp án A

Điều kiện  x ≥ 2

Đặt  t = x + 2   t ≥ 0 ⇒ x = t 2 - 2

Khi đó phương trình tương đương

Từ bảng biến thiên ra suy ra phương trình có nghiệm thì  0 < m < 5 5 4 .

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 6 2019 lúc 12:22

Bình luận (0)
H24
Xem chi tiết
RH
4 tháng 2 2024 lúc 22:43

Đặt \(t=2^x>0\).

Phương trình ban đầu trở thành: \(t^2-4t+m=0\) (*)

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt dương:

\(\left\{{}\begin{matrix}\Delta'>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\4>0\left(đúng\right)\\m>0\end{matrix}\right.\Leftrightarrow0< m< 4\)

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2017 lúc 15:20

Đáp án B.

Đặt t = log2 x,

khi đó  m + 1 log 2 2   x + 2 log 2   x + m - 2 = 0

⇔ m + 1 t 2 + 2 t + m - 2 = 0 (*).

Để phương trình (*) có hai nghiệm phân biệt

Khi đó gọi x1, x2 lần lượt hai nghiệm của phương trình (*).

Vì 0 < x1 < 1 < x2 suy ra

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 11 2017 lúc 5:25

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 6 2019 lúc 1:57

Bình luận (0)
MC
Xem chi tiết
NT
17 tháng 6 2023 lúc 11:01

1B

2A

Bình luận (0)