Giá trị nào của x không thỏa mãn điều kiện − 3 < x < 0 :
A. x= -3
B. x= 0
C. x= 1
D. x= -2
Nếu x thỏa mãn điều kiện 3 + x = 3 thì x nhận giá trị là:
A. 0 B. 6 C. 9 D. 36
Ta có: 3 + x = 3 ⇔ 3 + x = 9 ⇔ x = 6 ⇔ x = 36
Vậy chọn đáp án D.
tính giá trị của biểu thức
A=x-y/x+y biết x,y khác 0 và thỏa mạn điều kiện (x-y)(x-2y)=0
B=x/y biết x,y khác 0 và thỏa mạn điều kiện x+y/x-y=3/2
C=x/y biết x,y khác 0 và thỏa mãn điều kiện x+2y/x-y=3/5
cho các số thực x,y thỏa mãn x^3+y^3-6xy+11=0 giá trị P = x+y thỏa mãn điều kiện nào dưới đây
a. x+y < -3
b. x+y > -3/2
c. x+y > 1/5
d. x+y < -2
B1 cho các số nguyên a,b,c,d thỏa mãn đồng thời 2 điều kiện sau a+b+c=d+1 và a^2+b^2+c^2=d^2+2d-1 chứng minh rằng (a^2+1)(b^2+1)(c^2+1) là số chính phương
B2 cho biểu thức A=\(\frac{x^2}{y^2+xy}\)-\(\frac{y^2}{x^2-xy}\)-\(\frac{x^2+y^2}{xy}\)(xy\(\ne\)0,y\(\ne\)+-x)
A) rút gọn A
b)tính giá trị của A^2 biết x,y thỏa mãn điều kiện x^2+y^2=3xy
c) chứng minh rằng biểu thức A không nhân giá trị nguyên với mọi giá trị nguyên của x,y thỏa mãn điều kiện ở trên
B3 tìm các cặp số (x;y) thỏa mãn điều kiện 4x^2+2y^2-4xy-16x-2y+41=0
cho biểu thức A=(2+x/2-x - 4x^2/x^2+4) - 2-x/2+x):(x^2-3x/2x^2-x^3)
a)tìm điều kiện xác định rồi rút gọn biểu thức A
b)tìm giá trị của x để A>0
C)tính giá trị của A khi x thỏa mãn |x-7|=4
giúp mình vs ạ...5* luôn ạ
bài 1: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 2: hai số x và y thỏa mãn các điều kiện x+y=-1 và xy=-12. tính giá trị của các biểu thức sau:
a)A=x^2+2xy+y^2 b) B=x^2+y^2 c)C=x^3+3x^2y+3xy^2+y^3 d) D=x^3+y^3
Cho phương trình: x(x-2)-(x+3)^2 + 1=0 Nghiệm của phương trình thỏa mãn điều kiện nào sao đây?
A. Là một số tự nhiên.
B. Là phần tử của tập hợp A = [-1;1]
C. Là phần tử của tập hợp B=[0;2]
D. Là một số thực không âm.
1tính C = \(x^3+xy^3-x^3y+y^3\) tại x, y thỏa mãn: \(\left(x-1\right)^4+\left(y+1\right)^4=0\)
2tìm x biết \(|x+1|+|x+2|+...+|x+9|=14x\)
3tìm các số a,b, c không âm thỏa mãn đồng thời ba điều kiện: a+3c=2014:a+2b=2015: tổng (a+b+c)đạt giá trị lớn nhất
1 do (x-1)4 là số tự nhiên,(y+1)^4 là số tự nhiên
nên để tổng bằng 0 thì cả (x-1)4 và (y+1)^4cùng bằng 0
nên x=0,y=-1
thay x,y vào rồi tính C
ta có:\(A=\left|x+1\right|+\left|x+2\right|+...+\left|x+9\right|=14x\left(1\right)\)
do \(\left|x+1\right|\ge0,\left|x+2\right|\ge0,....,\left|x+9\right|\ge0\)
\(\Rightarrow14x>0\)\(\Rightarrow x>0\)
khi đó (1) trở thành:x+1+x+2+x+3+...+x+9=14x
\(\Rightarrow9x+45=14x\)
\(\Rightarrow45=5x\)
\(\Rightarrow x=9\)
cho x,y thỏa mãn điều kiện x+y=1 và x>0. tìm giá trị lớn nhất của biểu thức B=x2y3
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...