Tìm a để 200+a chia hết cho 11, biết 1 ≤ a ≤ 9 .
Tìm a dể 200+a chia hết cho 11, biết 1 ⩽ a ⩽ 9
Tìm a để 200+a chia hết cho 7, biết 1 ⩽ a ⩽ 9
Tìm a để 200+a chia hết cho 7, biết 1 ≤ a ≤ 9 .
Sơ đồ con đường |
Lời giải chi tiết |
|
Xét 200 + a = 196 + 4 + a ⋮ 7 Áp dụng tính chất chia hết của một tổng ta có: 196 ⋮ 7 196 + 4 + a ⋮ 7 ⇒ 4 + a ⋮ 7 Mà 1 ≤ a ≤ 9 ⇒ a = 1
|
Bài 1 tìm x ϵ N
A) x chia hết cho 10,x chia hết cho 9, x chia hết cho -11 và -100<x < 200
B) x chia hết cho 9,(-12),(-15) và -200 < x < 300
Bài 2. 1 khối hs khi xếp thành từng hàng 2,3,4,5,6 đều thiếu một ng, hàng 7 thì đủ. Biết số hs < 300hs. Tìm số hs
Bài 3 tìm a;b thuộc N
A) a+ b = 84 và (a;b)= 6
B) a.b = 720 và (a;b) = 6
C) (a;b) = 6 và BCNN(a;b) = 120
AI GIÚP VS
Bài 1:
a: \(\Leftrightarrow x\in BC\left(10;9;-11\right)\)
mà -100<x<200
nên x=0
b: \(\Leftrightarrow x\in BC\left(9;-12;-15\right)=B\left(180\right)\)
mà -200<x<300
nên \(x\in\left\{0;180\right\}\)
Bài 2:
Gọi số học sinh là x
Theo đề, ta có: \(\left\{{}\begin{matrix}x+1\in BC\left(2;3;4;5;6\right)\\x⋮7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1\in\left\{60;120;180;240;300;...\right\}\\x⋮7\end{matrix}\right.\)
=>x=119
Bài 1 tìm x ϵ N
A) x chia hết cho 10,x chia hết cho 9, x chia hết cho -11 và -100<x < 200
B) x chia hết cho 9,(-12),(-15) và -200 < x < 300
Bài 2. 1 khối hs khi xếp thành từng hàng 2,3,4,5,6 đều thiếu một ng, hàng 7 thì đủ. Biết số hs < 300hs. Tìm số hs
Bài 3 tìm a;b thuộc N
A) a+ b = 84 và (a;b)= 6
B) a.b = 720 và (a;b) = 6
C) (a;b) = 6 và BCNN(a;b) = 120
3)
a) Theo đề bài ra :
a +b = 84
(a ;b) = 6
Ta có: a = 6m (m ;n) = 1
b = 6n
\(\Rightarrow\) 6(m+n) = 84
m+n = 14
Lập bảng:
m | 1 | 3 | 5 |
n | 13 | 11 | 9 |
a = 6m | 6 | 18 | 30 |
b = 6n | 78 | 66 | 54 |
Vậy a = 6 và b = 78
a = 18 và b = 66
a = 30 và b = 54
3)
b) Theo đề bài ra :
a .b = 720
( a;b) = 6
Ta có: a = 6m (m;n) = 1
b =6n
\(\Rightarrow\) 6m . 6n = 720
m . n = 720 : 36 = 20
Lập bảng:
m | 1 | 4 |
n | 20 | 5 |
a = 6m | 6 | 24 |
b = 6n | 120 | 30 |
Vậy a = 6 và b = 120
a = 24 và b = 30
3)
c) Theo đề bài ra:
(a;b) = 6
[ a;b] = 120
Ta có: a. b = (a;b) . [a;b] = 6 . 120 = 720
Phần sau bạn làm như câu b
1, Tìm các chữ số a và b biết a-b= 4 và 27a7b chia hết cho 11.
2, Tìm các chữ số a và b để số 828ab chia 5 và 9 đều dư 4 và không chia hết cho 2.
1, Tìm các chữ số a và b biết a-b= 4 và 27a7b chia hết cho 11.
a = 8 ; b = 4 và 27874 : 11 = 2534(chia hết cho 11)
mình làm câu 1 thôi được không bạn
~~~học tốt nha~~~
tìm số nguyên a biết 11 chia hết cho 2a +9
tìm số nguyên n để n+ 2 chia hết cho n-3
a, \(11⋮2a+9\Rightarrow2a+9\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
2a + 9 | 1 | -1 | 11 | -11 |
2a | -8 | -10 | 2 | -20 |
a | -4 | -5 | 1 | -10 |
b, \(n+2⋮n-3\Leftrightarrow n-3+5⋮n-3\Leftrightarrow5⋮n-3\)
làm tương tự như trên
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.
Tìm số A có hai chữ số, biết rằng A chia hết cho 9 và
A + 1 chia hết cho 11.
54 nha
k cho mình đi