Cho 48 n : 6 n = 64 thì
A. n = 0
B n = 3
C. n = 2
D. n = 1
Bài 1: Tính nhanh:
37,5.6,5 - 7,5.3,4 - 6,6.7,5 + 3,5.37,5
Bài 2: Tìm x, biết:
a) x^3 - 0,25x = 0
b) x^2 - 10x = - 25
c) x^3 - 13x = 0
d) x^2 + 2x - 1 = 0
Bài 3: CMR: Với mọi n thuộc Z thì:
a) (5n + 2)^2 - 4 chia hết cho 5
b) (n - 3)^2 - (n - 1)^2 chia hết cho 8
c) (n - 6)^2 - (n - 6) chia hết cho 24
Bài 4: Tìm n thuộc N để B = n^2 + 5 là số chính phương
bài 2 phần a
x^3-0,25x = 0
x*(x2 - 0,25)=0
=> TH1: x=0
TH2 : x2 - 0.25=0
(x-0,5)(x+0,5)=0
=> x=0.5
x=-0.5
Vậy x=0 , x=+ - 5
sai thì thông cảm
Câu 1 : Tìm x , biết
a) x3-3x2-16x+48=0
b) x3-7x-6=0
c) 2x4-x3+2x3+3x-2=0
Câu 2 : Phân tích thành nhân tử
a) A=x2-x-6
b) B=x4+4x2-5
c) C=x3-19x-30
d) D = x4+x2+1
Câu 13: Chứng minh rằng
a) 2n3-3n2+n chia hết cho 6 , vs mọi giá trị nguyên n
b) n3+11n chia hết chó 6 , vs n nguyên
c) n4+2n3+3n2+2n chia hết cho 8 , vs n nguyên
d) 2n3+3n2+7n chia hết cho 6 , với n nguyên
\(x^2-x-6=x^2-3x+2x-6=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)\)
\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(x^3-19x-30=\left(x^3+8\right)-\left(19x-38\right)=\left(x+2\right)\left(x^2-2x+4\right)-19\left(x+2\right)=\left(x+2\right)\left(x^2-2x-15\right)=\left(x+2\right)\left(x^2-5x+3x-15\right)=\left(x+2\right)\left(x-5\right)\left(x+3\right)\)
\(x^4+4x^2-5=x^4+4x^2+4-9=\left(x^2+2\right)^2-9=\left(x^2+5\right)\left(x^2-1\right)=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(x^3-7x-6=0\Leftrightarrow\left(x^3+1\right)-\left(7x+7\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x^2-3x+2x-6\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\\x=-1\end{matrix}\right.\)
\(x^3-3x^2-16x+48=x^2\left(x-3\right)-16\left(x-3\right)=\left(x^2-16\right)\left(x-3\right)=\left(x-4\right)\left(x+4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-4\end{matrix}\right.\)
\(2x^4-x^3+2x^2+3x-2=0\Leftrightarrow2x^4-x^3+2x\left(x+1\right)-2\left(x+1\right)+3x=0\Leftrightarrow3x^4+3x-x^3\left(x+1\right)+2x\left(x+1\right)-2\left(x+1\right)=0\Leftrightarrow3x\left(x+1\right)\left(x^2-x+1\right)-x^3\left(x+1\right)+2x\left(x+1\right)-2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(2x^3-3x^2+5x-2\right)=0\)
Chứng minh rằng:
a. n^3+3n^2+2n chia hết cho 6 với mọi n thuộc Z
b. A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+....+2^98+2^99 chia hết cho 31
c. 49^n+77^n-29^n-1 chia hết cho 48
giúp mik với mik cần gấp
a) Ta có : n3 + 3n2 + 2n
= n(n2 + 3n + 2)
= n(n + 1)(n + 2) \(⋮\)6 (tích 3 số nguyên liên tiếp) (đpcm)
b) A = 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + .... + 295 + 296 + 297 + 298 + 299
= (1 + 2 + 22 + 23 + 24) + 25(1 + 2 + 22 + 23 + 24) + ... + 295(1 + 2 + 22 + 23 + 24)
= 31 + 25.31 + .. + 295.31
= 31(1 + 25 + ... + 295) \(⋮31\)(đpcm)
c) Ta có 49n + 77n - 29n - 1
= (49n - 1) + (77n - 29n)
= (49 - 1)(49n - 1 - 49n - 2 + .... - 1) + (77 - 29)(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1) + 48(77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1)
= 48(49n - 1 - 49n - 2 + .... - 1 + 77n - 1 - 77n - 2.29 + 77n- 3.292 - .... - 1) \(⋮\)48 (đpcm)
Chứng minh với mọi n thuộc Z thì:
a, n^7 -n chia hết cho 7
b, 2n^3+3n^2+n chia hết cho 6
c, n^5-5n^3+4n chia hết cho 120
d,n^3-3n^2-n+3 chia hết cho 48
CÁC BN GIÚP MIK VS NHA!!! CẢM ƠN NHÌU NHÌU NEK!!!>3<!!!
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
Mik cảm ơn bn nhìu nha!!!!^-^!!!
chứng tỏ với mọi n\(\varepsilon\)N,thì
a)3n+2 - 2n+2 +3n - 2n chia hết cho 10
b)3n+3 +3n+1 + 2n+3 + 2n+2 chia hết cho 6.
Tìm n \(\varepsilon\)N ,biết
364 < n48 <572
3^n+3+3^n+1+2^n+3+2^n+2 chia hết cho 6
=3^n.30+2^n.12
Suy ra 3^n+3+3^n+1+2^n+2^n+2 chia hết cho 6
nhớ tích đúng cho mình nha
http://olm.vn/hoi-dap/question/160314.html
Tìm n, biết: \(\dfrac{\left(-4\right)^n}{16}=-64\)
A. n = 6 B. n = 5 C. n = 3 D. n = 256
bài 1: cm
a,n^3+11n chia hết cho 6 vs nEN
b,n^3+17n chia hết cho 6 vs nEN
c,n^3+3n^2-n-3 chia hết cho 48 vs n là số lẻ
d,n^4-4n^3-4n^2+16n chia hết cho 384 vs là số chẵn lớn hơn 4
so sánh
a) n+3/n+2 và n+7/n+6
b) n+1/n+2 và n/n+3
c) 64/85 và 73/81
d) 37/67 và 377/677
e) 43/41 và 172/165
>
>
<
<
>
điền vào theo thứ tự nha bạn!
làm và diễn giải giúp mk nhé. Cầu xin đó...
CMR với mọi n lẻ thì
a. n^2 +4n +3 Chia hết cho 8
b. n^3+3n^2 - n-3chia hết cho 48
c. n^12 -n^8 -n^4 +1 chia hết cho 512
Tìm số dương N bé nhất (N>0) biết rằng khi chia cho 2 thì dư 1, chia cho 3 thì dư 2, chia cho 7 thì dư 6, chia cho 11 thì dư 10
A.421
B.435
C.461
D.471
E.481
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461