gieo một con súc sắc cân đối 3 lần. Tính xác suất để có ít nhất 2 lần xuất hiện mặt một chấm
Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất để 1) lần thứ nhất được số chấm chẵn và lần thứ hai được số chấm lẻ. 2) hai lần gieo có số chấm như nhau. 3) mặt 6 chấm xuất hiện ít nhất một lần. 4) tổng số chấm xuất hiện trong hai lần gieo bé hơn 10.
Xác suất:
a. \(\dfrac{3}{6}.\dfrac{3}{6}=\dfrac{1}{4}\)
b. \(\dfrac{6}{36}=\dfrac{1}{6}\)
c. Xác suất mặt 6 chấm ko xuất hiện lần nào: \(\dfrac{5}{6}.\dfrac{5}{6}=\dfrac{25}{36}\)
Xác suất mặt 6 xuất hiện ít nhất 1 lần: \(1-\dfrac{25}{36}=\dfrac{11}{36}\)
d. Các trường hợp tổng 2 mặt lớn hơn hoặc bằng 10: (6;4), (4;6); (5;5); (5;6);(6;5);(6;6) có 6 khả năng
\(\Rightarrow36-6=30\) khả năng tổng số chấm bé hơn 10
Xác suất: \(\dfrac{30}{36}=\dfrac{5}{6}\)
Gieo một súc sắc 3 lần
a) Tính xác suất để có ít nhất một lần xuất hiện mặt 6 chấm
A. 1/216
B. 91/216
C. 7/216
D. 25/72
Gọi Ai là biến cố:” xuất hiện mặt sáu chấm ở lần thứ i”, i=1,2,3 X là biến cố:” có ít nhất một lần xuất hiện mặt thứ 6” thì
Chọn B
Một con súc sắc cân đối và đồng chất được gieo hai lần. Tính xác suất sao cho :
a) Tổng số chấm của hai lần gieo là 6
b) Ít nhất một lần gieo xuất hiện mặt một chấm
Rõ ràng \(\Omega=\left\{\left(i;j\right):1\le i,j\le6\right\}\)
Kí hiệu :
\(A_1:\) "Lần đầu xuất hiện mặt 1 chấm"
\(B_1:\) "Lần thứ hai xuất hiện mặt 1 chấm"
\(C:\) " Tổng số chấm là 6"
\(D:\) "Mặt 1 chấm xuất hiện ít nhất một lần"
a) Ta có \(C=\left\{\left(1,5\right),\left(5,1\right),\left(2,4\right),\left(4,2\right)\left(3,3\right)\right\},P\left(C\right)=\dfrac{5}{36}\)
b) Ta có \(A_1,B_1\) độc lập và \(D=A_1\cup B_1\) nên
\(P\left(D\right)=P\left(A_1\right)+P\left(B_1\right)-P\left(A_1B_1\right)\)
\(=\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{6}.\dfrac{1}{6}=\dfrac{11}{36}\)
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A. 8 49
B. 4 9
C. 1 12
D. 3 49
Đáp án A
Tổng số chấm trên mặt xuất hiện trong hai lần gieo ≥ 11 khi các kết quả là 6 ; 6 , 5 ; 6 , 6 ; 5
Gọi x là xác suất xuất hiện mặt 6 chấm suy ra x 2 là xác suất xuất hiện các mặt còn lại
Ta có 5. x 2 + x = 1 ⇒ x = 2 7 .
Do đó xác suất cần tìm là 2 7 2 + 2 7 . 1 7 + 1 7 . 2 7 = 8 49
Gieo một con súc sắc cân đối, đồng chất một lần. Xác suất để xuất hiện mặt chẵn chấm?
A . 1 6
B . 1 4
C . 1 2
D . 1 3
Chọn C
Gọi A là biến cố “ Súc sắc xuất hiện mặt chẵn chấm”
Gieo một con súc sắc 3 lần. Tính xác suất sao cho mặt 6 chấm xuất hiện ít nhất một lần ?
Gieo một con súc sắc ba lần. Tính xác suất sao cho mặt sáu chấm xuất hiện ít nhất một lần
Không gian mẫu là kết quả của việc gieo 3 lần súc sắc
⇒ n(Ω) = 6.6.6 = 216.
A: “ Mặt 6 chấm xuất hiện ít nhất 1 lần”
⇒ A−: “ Không xuất hiện mặt 6 chấm”
Gieo ngẫu nhiên một con súc sắc cân đối, đồng chất liên tiếp 3 lần. Xác suất để được mặt có 6 chấm chỉ xuất hiện trong lần gieo thứ 3 là bao nhiêu?
A. .
B. .
C. .
D. Khác.
Chọn B
Gọi Ai : “lần gieo thứ i xuất hiện mặt 6 chấm.”, với
⇒
⇒
A : “mặt có 6 chấm chỉ xuất hiện trong lần gieo thứ 3”
Một con súc sắc không cân đối, có đặc điểm mặt sáu chấm xuất hiện nhiều gấp hai lần các mặt còn lại. Gieo con súc sắc đó hai lần. Xác suất để tổng số chấm trên mặt xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 bằng
A. 8 49
B. 4 9
C. 1 12
D. 3 49
Đáp án A.
Tổng số chấm xuất hiện trong hai lần gieo lớn hơn hoặc bằng 11 khi các kết quả là (6;6), (5;6), (6;5)
Gọi x là xác suất xuất hiện mặt 6 chấm suy ra x 2 là xác suất xuất hiện các mặt còn lại.
Ta có: 5 x 2 + x = 1 ⇒ x = - 2 7
Do đó xác suất cần tìm là: 2 7 2 + 2 7 . 1 7 + 1 7 . 2 7 = 8 49 .
Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất 2 lần. Tính xác suất của các biến cố
A: “ Mặt 6 chấm xuất hiện ở lần gieo đầu tiên”
B: “Số chấm ở 2 lần gieo như nhau”
C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 9”