Những câu hỏi liên quan
VL
Xem chi tiết
VC
18 tháng 9 2017 lúc 20:40

câu 1 

ta có .....

lười viết Min - cốp xki nha

Bình luận (0)
PT
18 tháng 9 2017 lúc 21:25

DKXD của A, ta có \(x^{2\le5\Rightarrow-\sqrt{5}\le x\le\sqrt{5}}\)

mà \(3x\ge-3\sqrt{5}\)

mặt kkhác \(\sqrt{5-x^2}\ge0\Rightarrow A=3x+x\sqrt{5-x^2}\ge-3\sqrt{5}\)

min A= \(-3\sqrt{5}\)\(\Leftrightarrow x=-\sqrt{5}\)

Bình luận (0)
PT
18 tháng 9 2017 lúc 21:52

ta có \(A^2\le25\)và ta cx có \(-5\le A\le5\)

nhưng dễ thấy \(A=-5\)không xảy ra, vô lí nên ...........bạn xem đoạn sau nhé ( tiếp phần kia )

Bình luận (0)
VC
Xem chi tiết
OO
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Bình luận (0)
NC
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Bình luận (0)
H24
Xem chi tiết
AH
22 tháng 5 2021 lúc 3:06

Lời giải:
Đặt $\sqrt{2+x}=a; \sqrt{2-x}=b$. ĐK: $a,b\geq 0$

$a^2+b^2=4$

Gọi biểu thức cần tìm min max là $D$

$D=a+b-ab=(a-2)(2-b)+4-(a+b)$

Vì $a^2+b^2=4\Rightarrow a,b\leq 2$

$\Rightarrow (a-2)(2-b)\leq 0$

Mặt khác: $a^2+b^2=4\Rightarrow (a+b)^2=4+2ab\geq 4$

$\Rightarrow a+b\geq 2$

Do đó: $D=(a-2)(2-b)+4-(a+b)\leq 4-(a+b)\leq 2$

Vậy $D_{\max}=2$ khi $x=\pm 2$

--------------------

$4=a^2+b^2\geq 2ab\Rightarrow ab\leq 2$

$D=a+b-ab=\sqrt{4+2ab}-ab$

$=\sqrt{4+2ab}-2\sqrt{2}-(ab-2)+2\sqrt{2}-2$

$=\frac{2(ab-2)}{\sqrt{4+2ab}+2\sqrt{2}}-(ab-2)+2\sqrt{2}-2$

$=(ab-2)(\frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1)+2\sqrt{2}-2$

Vì $ab\leq 2\rightarrow ab-2\leq 0$

$ab\geq 0\Rightarrow \frac{2}{\sqrt{4+2ab}+2\sqrt{2}}-1 <\frac{2}{\sqrt{4}+2\sqrt{2}}-1<0$

$\Rightarrow D\geq 0+2\sqrt{2}-2=2\sqrt{2}-2$
Vậy $D_{\min}=2\sqrt{2}-2$ khi $x=0$

Bình luận (0)
H24
Xem chi tiết
AV
Xem chi tiết
H24
Xem chi tiết
MY
9 tháng 10 2021 lúc 20:58

\(dkxđ\Leftrightarrow\left\{{}\begin{matrix}-x^2+5x\ge0\\-x^2+3x+18\ge0\end{matrix}\right.\)\(\Rightarrow0\le x\le5\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\le5\end{matrix}\right.\)

\(\Rightarrow A=\sqrt{5x-x^2}+\sqrt{18+3x-x^2}\)

\(\sqrt{5x-x^2}=\sqrt{-\left(x^2-5x+\dfrac{25}{4}-\dfrac{25}{4}\right)}=\sqrt{-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\right]}=\sqrt{-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}}\ge0\left(1\right)\)

\(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)

\(\sqrt{-x^2+3x+18}=\sqrt{-\left(x^2-3x-18\right)}=\sqrt{-\left[x^2-3x+\dfrac{9}{4}-\dfrac{81}{4}\right]}=\sqrt{-\left(x-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}\ge\sqrt{-\left(5-\dfrac{3}{2}\right)^2+\dfrac{81}{4}}=\sqrt{8}\left(2\right)\)

dấu"=" xảy ra \(< =>x=5\)

\(\left(1\right)\left(2\right)\Rightarrow A\ge\sqrt{8}\) \(dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=5\)\(\Rightarrow MinA=\sqrt{8}\)

\(\left(maxA=\sqrt{48}\right)dấu\) \("="\) \(xảy\) \(ra\Leftrightarrow x=\dfrac{15}{7}\)

 

\(\)

Bình luận (1)
RK
Xem chi tiết
CA
23 tháng 12 2015 lúc 22:37

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

Bình luận (0)
BD
Xem chi tiết
LA
Xem chi tiết
AV
Xem chi tiết
PQ
22 tháng 7 2019 lúc 21:46

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)

Bình luận (0)