Trong không gian với hệ tọa độ Oxyz, mặt phẳng đi qua điểm A(2; - 3; - 2) và có một vectơ pháp tuyến n → 2 ; - 5 ; 1 có phương trình là
A. 2x - 3y - 2z - 18 = 0
B. 2x - 5y+z+17 = 0
C. 2x - 5y+z - 12 = 0
D. 2x - 5y+z - 17 = 0
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các hình chiếu của điểm A(1 ;2 ;3) trên các trục tọa độ là:
Đáp án C.
Hình chiếu của A(1 ;2 ;3) lên trục Ox là M(1;0;0)
Hình chiếu của A(1 ;2 ;3) lên trục Oy là N(0;2;0)
Hình chiếu của A(1 ;2 ;3) lên trục Ox là P(0;0;3)
Phương trình mặt phẳng (P) cần tìm là:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;1). Gọi (P) là mặt phẳng đi qua A và cách gốc tọa độ một khoảng lớn nhất. Khi đó, mặt phẳng (P) đi qua điểm nào sau đây?
A. M 1 − 1 ; − 2 ; 0
B. M 2 1 ; − 2 ; 0
C. M 3 − 1 ; 2 ; 0
D. M 4 1 ; 2 ; 0
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các hình chiếu của điểm A(1;2;3) trên các trục tọa độ là:
A. x + 2y + 3z = 0
B. x + y 2 + z 3 = 0
C. x + y 2 + z 3 = 1
D. x + 2y + 3z = 1
Trong không gian với hệ tọa độ Oxyz. Phương trình mặt phẳng đi qua 3 điểm A(-3;0;0), B(0;4;0), C(0;0;-2) là
A. x - 3 + y - 4 + z 2 = 1
B. x - 3 + y 4 + z - 2 = 1
C. x - 3 - y 4 + z - 2 = 1
D. x 3 + y - 4 + z 2 = 1
Trong không gian với hệ tọa độ Oxyz. Phương trình mặt phẳng đi qua 3 điểm A(-3;0;0), B(0;4;0), C(0;0;-2) là
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua các điểm A − 1 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; − 2 có phương trình là
A. − 2 x + y − z − 2 = 0
B. − 2 x + y + z − 2 = 0
C. − 2 x − y − z + 2 = 0
D. − 2 x + y − z + 2 = 0
Đáp án A
x − 1 + y 2 + z − 2 = 1
⇔ − 2 x + y − z − 2 = 0
Trong không gian với hệ tọa độ Oxyz cho điểm Phương trình mặt phẳng ( Q ) đi qua các hình chiếu của điểm A lên các trục tọa độ là
A . ( Q ) : x - y + 2 z - 2 = 0
B . ( Q ) : 2 x - 2 y + z - 2 = 0
C . ( Q ) : x - 1 + y 1 + z - 2 = 1
D . ( Q ) : x - y + 2 z + 6 = 0
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng ∆ đi qua điểm A ( 2 ; - 1 ; 3 ) và vuông góc với mặt phẳng (Oxz) là.
A. x = 2 y = 1 - t z = 3
B. x = 2 y = 1 + t z = 3
C. x = 2 y = - 1 + t z = 3
D. x = 2 + t y = - 1 z = 3 + t
Chọn C.
Mặt phẳng (Oxz) có vectơ pháp tuyến j → 0 ; 1 ; 0
Vì ∆ vuông góc với mp(Oxz) nên ∆ có vectơ chỉ phương
∆ đi qua điểm A(2;-1;3) và có vectơ chỉ phương a ∆ →
Vậy phương trình tham số của ∆ là x = 2 y = - 1 + t z = 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P đi qua các điểm A - 2 ; 0 ; 0 , B 0 ; 3 ; 0 , C 0 ; 0 ; - 3 . Mặt phẳng P vuông góc với mặt phẳng nào trong các mặt phẳng sau?
A. Q 1 : x + y + z + 1 = 0
B. Q 2 : x - 2 y - z - 3 = 0
C. Q 3 : 2 x + 2 y - z - 1 = 0
D. Q 4 : 3 x - 2 y + 2 z + 6 = 0
Chọn đáp án C
Phương trình mặt phẳng (P) theo đoạn chắn
Dễ thấy mặt phẳng (P) vuông góc với mặt phẳng Q 3 có phương trình 2 x + 2 y - z - 1 = 0 vì tích vô hướng của hai vectơ pháp tuyến bằng 0.