Cho B = 12 ( 2.4 ) 2 + 20 ( 4.6 ) 2 + ... + 388 ( 96.98 ) 2 + 396 ( 98.100 ) 2 . Hãy so sánh B với 1 4
Cho B=12/(2.4)^2+20/(4.6)^2+........+388/(96.98)^2+396/(98.100)^2. Hãy so sánh B với 1/4
) Cho B = 12/(2.4)2 + 20/(4.6)2 + … 388/(96.98)2 + 396/(98.100)2. Hãy so sánh B với 1/4
B=\(\frac{12}{2^2.4^2}+\frac{20}{4^2.6^2}+......+\frac{388}{96^2.98^2}+\frac{396}{98^2.100^2}\)
=\(\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
=\(\frac{1}{2^2}-\frac{1}{100^2}\)
=\(\frac{2599}{10000}< \frac{2500}{10000}=\frac{1}{4}\)
=> B<\(\frac{1}{4}\)
Bn ơi ! 1/22 - 1/1002 là 2499/10000 chứ bn
Cho B = 12/(2.4)2 + 20/(4.6)2 + … 388/(96.98)2 + 396/(98.100)2. Hãy so sánh B với 1/4
B=\(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
Ai nhanh mik tick cho
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+............+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(B=\frac{4^2-2^2}{\left(2.4\right)^2}+\frac{6^2-4^2}{\left(4.6\right)^2}+..........+\frac{98^2-96^2}{\left(96.98\right)^2}+\frac{100^2-98^2}{\left(98.100\right)^2}\)
\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-...............-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
\(B=\frac{1}{2^2}-\frac{1}{100^2}\)
\(B=\frac{1}{4}-\frac{1}{10000}\)
\(B=\frac{2500}{10000}-\frac{1}{10000}\)
\(B=\frac{2499}{10000}\)
Vậy B = \(\frac{2499}{10000}\)
Cho B = \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+..........+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
Hãy so sánh B và \(\frac{1}{4}\)
Ta có :
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)
\(=\frac{12}{4.16}+\frac{20}{16.36}+...+\frac{388}{9216.9604}+\frac{396}{9604.10000}\)
\(=\frac{1}{4}-\frac{1}{16}+\frac{1}{16}-\frac{1}{36}+...+\frac{1}{9604}-\frac{1}{10000}\)
\(=\frac{1}{4}-\frac{1}{10000}< \frac{1}{4}\)
\(\Leftrightarrow B< \frac{1}{4}\)
B=\(\frac{12}{4.16}\)+\(\frac{20}{16.36}\)+...+\(\frac{396}{9604.10000}\)
Ta có:\(\frac{12}{4.16}\)=\(\frac{1}{4}\)-\(\frac{1}{16}\)
\(\frac{20}{16.36}\)=\(\frac{1}{16}\)-\(\frac{1}{36}\)
...
Khi đó:B=\(\frac{1}{4}\)-\(\frac{1}{16}\)+\(\frac{1}{16}\)-\(\frac{1}{36}\)+...+\(\frac{1}{9604}\)-\(\frac{1}{10000}\)=\(\frac{1}{4}\)-\(\frac{1}{10000}\)<\(\frac{1}{4}\)
Vậy: B<\(\frac{1}{4}\)
Cho B=\(\frac{12}{\left(2.4\right)^2}\)+\(\frac{20}{\left(4.6\right)^2}\)+...\(\frac{388}{\left(96.98\right)^2}\)+\(\frac{396}{\left(98.100\right)^2}\). Hãy so sánh B với \(\frac{1}{4}\).
Ta có:
B=\(\frac{4^2-2^2}{2^2\times4^2}+\frac{6^2-4^2}{4^2\times6^2}+...+\frac{98^2-96^2}{96^2\times98^2}+\frac{100^2-98^2}{98^2\times100^2}\)
=\(\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-\frac{1}{6^2}+...+\frac{1}{96^2}-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)
= \(\frac{1}{4}-\frac{1}{100^2}< \frac{1}{4}\)
Ai làm nhanh và đúng nhất thì mình k cho nhé <3
\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(96.100\right)^2}\)
So sánh B với\(\frac{1}{4}\)
giúp mình nhé mn
a ) x-12=-28
b)20+8.(x+3)=5^2.4
a = - 16
b = - 2, 72( Mik ko chắc
Chúc bạn hok tốt
so sánh
A = 1.2 + 2.4 + 3.6 + 4.8 + 5.10 / 3.4 + 6.8 + 9.12 + 12. 16 + 15. 20
B = 111111/ 666665
Giải
Ta có: \(A=\dfrac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}=\dfrac{1.2\left(1+2.2+3.3+4.4+5.5\right)}{3.4\left(1+2.2+3.3+4.4+5.5\right)}=\dfrac{1.2}{3.4}=\dfrac{1}{6}\)
Vì \(A=\dfrac{1}{6}=\dfrac{111111}{666666}< \dfrac{111111}{666665}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)