Những câu hỏi liên quan
NT
Xem chi tiết
HG
Xem chi tiết
BC
Xem chi tiết
DT
7 tháng 3 2016 lúc 13:01

Áp dụng BĐT : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được:

P=-|3x-18|-|3x+7|=-|18-3x|-|3x+7|=-(|18-3x|+|3x+7|)\(\le\)-25

Dấu "=" xảy ra khi: (18-3x)(3x+7)\(\ge\)0

Giải cái đó ra bạn sẽ được: -7/3 \(\le x\le\)6

Mà x nguyên nên: x={-2;-1;0;1;2;3;4;5;6} có 9 phần tử

Vậy chọn C

Bình luận (0)
DV
6 tháng 3 2016 lúc 23:24

Áp dụng \(\left|a\right|-\left|b\right|\le\left|a-b\right|\) (dấu = xảy ra khi a,b > 0), ta có :

\(P=-\left|3x-18\right|-\left|3x+7\right|=-\left|3x-18\right|-\left|7+3x\right|\le-\left|\left(3x-18\right)-\left(7+3x\right)\right|\)

\(=-\left|3x-18-7-3x\right|=-\left|-18-7\right|=-25\)

GTLN của P là -25 <=> 3x - 18 > 0 và  3x + 7 > 0

<=> 3x > 18 và 3x > -7 => x > 6 

Vậy có vô số giá trị của x thỏa mãn P có GTLN với điều kiện x > 6 và x là số nguyên

Bình luận (0)
BC
7 tháng 3 2016 lúc 0:09

anh Đinh Tuấn Việt ơi, đây là bài chọn đáp án, có 4 đáp án:

a/10         

b/11

c/9

d/8

anh đưa ra con số cụ thể giùm e được ko?

Bình luận (0)
DS
Xem chi tiết
H24
Xem chi tiết
LK
15 tháng 2 2018 lúc 9:43

Câu 1) ngộ thế

Bình luận (0)
DT
Xem chi tiết
NC
1 tháng 2 2021 lúc 14:06

\(\left\{{}\begin{matrix}x+mx=2\\mx-2y=1\end{matrix}\right.\)

Nếu m=0 \(\Rightarrow\left\{{}\begin{matrix}x=2\\-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{-1}{2}< 0\end{matrix}\right.\) (L)

Nếu m≠0 \(\Rightarrow\left\{{}\begin{matrix}mx+m^2y=2m\left(1\right)\\mx-2y=1\left(2\right)\end{matrix}\right.\)

Trừ từng vế của (1) cho (2) ta được:

\(m^2y+2y=2m-1\) \(\Leftrightarrow\left(m^2+2\right)y=2m-1\) \(\Leftrightarrow y=\dfrac{2m-1}{m^2+2}\) Thay vào (2) ta được:

\(mx-2\cdot\dfrac{2m-1}{m^2+2}=1\) \(\Leftrightarrow mx=1+\dfrac{4m-2}{m^2+2}=\dfrac{m^2+2+4m-2}{m^2+2}=\dfrac{m\left(m+4\right)}{m^2+2}\) 

\(x=\dfrac{m+4}{m^2+2}\)

Vì x>0, y>0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2m-1}{m^2+2}>0\\\dfrac{m+4}{m^2+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m-1>0\\m+4>0\end{matrix}\right.\) Vì \(m^2+2\ge2>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m>-4\end{matrix}\right.\) \(\Leftrightarrow m>\dfrac{1}{2}\) Vậy...

 

Bình luận (0)
NM
Xem chi tiết
NM
25 tháng 12 2016 lúc 20:15

giúp mình với . mình đang cần gấp nhé!

Bình luận (0)
HK
Xem chi tiết
TD
Xem chi tiết