Phương trình x 4 – 3 x 3 − 2 x 2 + 6 x + 4 = 0 có bao nhiêu nghiệm?
A. 1 nghiệm
B. 3 nghiệm
C. 4 nghiệm
D. 2 nghiệm
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
Nãy mình tìm được một cách giải tương tự cho câu 2.
PT \(\Leftrightarrow\left(x-1\right)\left(4x^3-3x^2+6x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x^3-3x^2+6x-4=0\left(1\right)\end{matrix}\right.\)
Vậy pt có 1 nghiệm bằng 1.
\(\left(1\right)\Rightarrow8x^3-6x^2+12x-8=0\)
\(\Leftrightarrow7x^3+x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=-7x^3\)
\(\Leftrightarrow x-2=-\sqrt[3]{7}x\)
\(\Leftrightarrow x=\dfrac{2}{1+\sqrt[3]{7}}\)
Vậy pt có nghiệm \(S=\left\{1;\dfrac{2}{1+\sqrt[3]{7}}\right\}\)
Lưu ý: Nghiệm của người kia hoàn toàn tương đồng với nghiệm của mình (\(\dfrac{2}{1+\sqrt[3]{7}}=\dfrac{1}{4}\left(1-\sqrt[3]{7}+\sqrt[3]{49}\right)\))
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Câu 1 : Phương trình nào trong các phương trình dưới đây là phương trình bậc nhất ?
A. 7 - x - 3x2 = x - 3x2 B. 4 - x = - ( x - 1)
C. 3 - x + x2 = x2 - x - 2 D. ( x - 3 )( x + 5 ) = 0
Câu 2 : Phương trình nào dưới đây có tập nghiệm là S = {3; -1}
A. ( x + 3)(x - 1) = 0 B. x2 + 3x + 2 = 0
C. x( x – 3)(x + 1)2 = 0 D. ( x – 3)(x + 1) = 0
Câu 3 : Phương trình nào dưới đây có vô số nghiệm ?
A. ( x + 3 )( x2 + 5 ) = 0. B. x2 = - 9
C. x3 = - 27 D. 5x - 3 + 3x = 8x - 3
Câu 4 : Phương trình - 2x2 + 11x - 15 = 0 có tập nghiệm là:
A. 3 B. C . D.
Câu 5. Điều kiện xác định của phương trình là:
A hoặc x ≠ -3 B.; C. và x ≠ - 3; D. x ≠ -3
Câu 6. Biết và CD = 21 cm. Độ dài của AB là:
A. 6 cm B. 7 cm; C. 9 cm; D. 10 cm
Câu 7. Cho tam giác ABC, AM là phân giác (hình 1). Độ dài đoạn thẳng MB bằng:
A. 1,7 B. 2,8 C. 3,8 D. 5,1
Câu 8. Trong Hình 2 biết MM' // NN', MN = 4cm, OM’ = 12cm và M’N’ = 8cm. Số đo của đoạn thẳng OM là:
A. 6cm; B. 8cm; C. 10cm; D. 5cm
Hình 1 Hình
1.B
2.D
3.B
4;5;6;7;8( bạn sửa lại đề nhé )
Câu 1: B
Câu 2: D
Câu 3: B
Cho phương trình (x+1)(x+2)(x+3)(x+4) = m
Định m để phương trình có đúng 3 nghiệm
Bài 2 (1,0 điểm). Giải phương trình và bất phương trình sau: a) |5x| = - 3x + 2 b) 6x – 2 < 5x + 3 Bài 3 (1,0 điểm.) Giải bất phương trình b) x – 3 x – 4 x –5 x – 6 ——— + ——– + ——– +——–
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
Bài 2: giải phương trình sau
a) \(X^4\)-\(x^2\)-2=0
b) (x+1)\(^4\)-x\(^2\)+2)\(^2\)=0
c)3x\(^2\)-2x-8=0
Bài 3: giải phương trình sau
a) x\(^3\)-0,25=0
b) x\(^4\)+2x\(^3\)+x\(^2\)=0
c) x\(^3\)-1=0
d) 6x\(^2\)-7x+2=0
Mong có người giải giùm xin kẻm ơn :>
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
I.trắc nghiệm
câu 1: phương trình nào sau đây là phương trình bậc nhất một ẩn:
A. x + y = 0 B. \(\dfrac{4}{x}+3\)
C. 5 - 4x = 0 C.x2 - 4 = 0
câu 2: điều kiện xác định của phương trình \(\dfrac{x+3}{x^2+9}=1\) là:
A. x ≠ 3 B. x ≠ -3
C. x ≠ 9 D. x ≠ 3 và x ≠ -3
câu 3: x = 4 là nghiệm của phương trình nào trong các phương trình sau:
A. 2x + 4 = 6 B. 2x + 1 = 5
C. x - 4 = 0 D. x + 4 = 0
câu 4: cho ΔABC kẻ đường thẳng MN // BC (\(M\in AB,N\in AC\)). Tìm khẳng định đúng:
A. \(\dfrac{AM}{AB}=\dfrac{AN}{NC}\) B.\(\)\(\dfrac{AM}{MB}=\dfrac{MN}{BC}\)
C. \(\dfrac{AN}{AC}=\dfrac{MN}{BC}\) D.\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\)
câu 5: ΔABC đường phân giác BD. Khẳng định đúng:
A. \(\dfrac{DA}{DC}=\dfrac{BC}{BA}\) B. \(\dfrac{CD}{CA}=\dfrac{BC}{BA}\)
C. \(\dfrac{BA}{DA}=\dfrac{BC}{DC}\) D. \(\dfrac{BD}{AD}=\dfrac{BD}{DC}\)
câu 6: tập nghiệm của phương trình (x2 + 1)(x - 3) = 0 là:
A. S = {3} B. S = {-1;1;3}
C. S = {-1;3} D. S = \(\varnothing\)
câu 7: phương trình 4x + k = 6 - 3x nhận x = 1 là một nghiệm, khi đó giá trị của k là:
A. k = 1 B. k = 6
C. k = -1 D.k = 7
câu 8: nếu ΔABC và ΔDEF có \(\dfrac{AB}{ED}=\dfrac{BC}{FE}=\dfrac{CA}{DF}\) thì:
A. ΔABC đồng dạng với ΔEDF B. ΔABC đồng dạng với ΔDEF
C. ΔABC đồng dạng với ΔFDE C. ΔABC đồng dạng với ΔEDF
câu 9: một hình thoi có độ dài đường chéo lần lượt là 8cm,6cm thì diện tích hình thoi bằng:
A. 24cm2 B.48cm2
C.14cm2 C.28cm2
câu 10: giá trị của m để phương trình (1 - m)x + 3mx + 5 = 0 có nghiệm duy nhất là:
A. m ≠ -2 B. m ≠ -1
C. m ≠ \(\dfrac{1}{2}\) D. m ≠ \(-\dfrac{1}{2}\)
câu 11: cho ΔABC ∼ ΔMNP theo tỉ số đồng dạng k thì tỉ số \(\dfrac{AB+BC+CA}{MN+NP+MP}\) là:
A. 3k B. k2 C. k D. \(\dfrac{1}{3}k\)
câu 12: nghiệm của phương trình \(\dfrac{X^2-25}{X+5}=0\) là:
A. x = 5 B. X = -5 C. x = \(\pm5\) D. vô nghiệm
II. tự luận:
câu 1: giải các phương trình:
a) 2x + 3 = 7x - 7
b) \(\dfrac{x}{2}+\dfrac{x-1}{3}=\dfrac{5}{2}\)
c) \(\dfrac{x}{x+2}+\dfrac{x-1}{x-2}=\dfrac{2x^2+x}{x^2-4}\)
câu 2: một người đi xe máy từ trung tâm thành phố Nha Trang đến sân bay Cam Ranh với vận tốc 36km/h. Khi về từ sân bay Cam Ranh đến trung tâm thành phố Nha Trang với vận tốc 40km/h, vì thế thời gian về ít hơn thời gian đi là 6 phút. Tính quãng đường từ trung tâm thành phố Nha Trang đến sân bay Cam Ranh?
câu 3: cho hình vẽ sau có DE // BC
a) tính độ dài đoạn DE
b) cho tam giác ABC có AB= 2cm, AC = 3cm, BC= 4cm, có đường phân giác AD. Tính dài của BD và CD
Giải phương trình và bất phương trình: 9/x^2-4 = x-1/x+2 +3/x -2
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(ĐKXĐ:x\ne\pm2\)
\(pt\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2-3x+2}{x^2-4}+\frac{3x+6}{x^2-4}\)
\(\Leftrightarrow\frac{9}{x^2-4}=\frac{x^2+8}{x^2-4}\)
\(\Leftrightarrow x^2+8=9\Leftrightarrow x=\pm1\left(tm\right)\)
Vậy pt có 2 nghiệm là 1 và -1
Điều kện : \(x+2\ne0\) và \(x-2\ne0\Leftrightarrow x=\pm2\)
( Khi đó \(x^2-4=\left(x+2\right)\left(x-2\right)\ne0\) )
\(\frac{9}{x^2-4}=\frac{x-1}{x+2}+\frac{3}{x-2}\)
\(\Leftrightarrow\frac{9}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x-1\right)\left(x-2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-3x+2+3x+6=9\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\)
Vậy tập nghiệm của PT là: \(S=\left\{-1;1\right\}\)
Chúc bạn học tốt !!!