Những câu hỏi liên quan
H24
Xem chi tiết
AH
20 tháng 4 2021 lúc 2:10

d,

\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)

e,

\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)

\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)

\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)

Vậy không tồn tại $x$ thỏa mãn đề bài.

f, 

\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)

\(\Leftrightarrow 6x-3=10+6x\)

\(\Leftrightarrow 13=0\) (vô lý)

Vậy không tồn tại $x$ thỏa mãn đề bài.

Bình luận (0)
AH
20 tháng 4 2021 lúc 2:15

a,

$0-|x+1|=5$

$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)

Do đó không tồn tại $x$ thỏa mãn điều kiện đề.

b,

\(2-|\frac{3}{4}-x|=\frac{7}{12}\)

\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)

\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)

c, 

\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)

\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)

\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)

\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
LT
Xem chi tiết
PL
1 tháng 6 2019 lúc 13:04

\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)

\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)

\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)

\(\Rightarrow x^2-3x-6=0\)

.....

Bình luận (0)
PL
1 tháng 6 2019 lúc 13:20

\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)

\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)

.....

Bình luận (0)
PL
1 tháng 6 2019 lúc 13:26

\(3,\)\(-2x^2+4x+3\)

\(=-2\left(x^2-2x-\frac{3}{2}\right)\)

\(=-2\left[\left(x^2-2x+1\right)-\frac{5}{2}\right]\)

\(=-2\left(x-1\right)^2+5\)

Đa thức này lớn nhất =5 khi và chỉ khi \(\left(x-1\right)^2\)nhỏ nhất 

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Bình luận (0)
MT
Xem chi tiết
NT
25 tháng 3 2020 lúc 13:42

Bài 1:

ĐKXĐ: x≠1

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x^2+x-1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4\left(x-1\right)=0\)

\(\Leftrightarrow x^2+x+1+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

Vì 3≠0

nên \(\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 2:

ĐKXĐ: x≠2; x≠3; \(x\ne\frac{1}{2}\)

Ta có: \(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-\left(2x+5\right)}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1-2x-5}{\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(-x-4\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x^2+x-12-x^2-2x+8=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow-x=4\)

hay x=-4(tm)

Vậy: x=-4

Bài 3:

ĐKXĐ: x≠1; x≠-1

Ta có: \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x-\frac{3x\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\frac{x+1}{x-1}-\frac{x-1}{x+1}-3x+\frac{3x\left(x-1\right)}{x+1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{3x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3x\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x^2-2x+1\right)-3x\left(x^2-1\right)+3x\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1-3x^3+3x+3x^3-6x^2+3x=0\)

\(\Leftrightarrow-6x^2+10x=0\)

\(\Leftrightarrow2x\left(-3x+5\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)

Bài 4:

ĐKXĐ: x≠1; x≠-3

Ta có: \(\frac{2x}{x-1}+\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}+\frac{4}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}=0\)

\(\Leftrightarrow2x^2+6x+4-\left(2x^2-7x+5\right)=0\)

\(\Leftrightarrow2x^2+6x+4-2x^2+7x-5=0\)

\(\Leftrightarrow13x-1=0\)

\(\Leftrightarrow13x=1\)

hay \(x=\frac{1}{13}\)(tm)

Vậy: \(x=\frac{1}{13}\)

Bài 5:

ĐKXĐ: x≠1; x≠-2

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)

\(\Leftrightarrow\frac{x+2}{\left(x-1\right)\left(x+2\right)}-\frac{7\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}-\frac{3}{\left(x+2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow x+2-7\left(x-1\right)-3=0\)

\(\Leftrightarrow x+2-7x+7-3=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Leftrightarrow-6\left(x-1\right)=0\)

Vì -6≠0

nên x-1=0

hay x=1(ktm)

Vậy: x∈∅

Bài 6:

ĐKXĐ: x≠4; x≠2

Ta có: \(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{6x-8-x^2}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}-\frac{2}{-\left(x^2-6x+8\right)}=0\)

\(\Leftrightarrow\frac{x+3}{x-4}+\frac{x-1}{x-2}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{2}{\left(x-4\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x^2+x-6+x^2-5x+4+2=0\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

Vì 2≠0

nên \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\)

Vậy: x=0

Bài 7:

ĐKXĐ: x≠1; x≠-2; x≠-1

Ta có: \(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)

\(\Leftrightarrow\frac{1}{x-1}-\frac{7}{x+2}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}-\frac{7\left(x-1\right)\left(x+1\right)}{\left(x+2\right)\left(x-1\right)\left(x+1\right)}+\frac{3\left(x+2\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2+3x+2-7\left(x^2-1\right)+3x+6=0\)

\(\Leftrightarrow x^2+3x+2-7x^2+7x+3x+6=0\)

\(\Leftrightarrow-6x^2+13x+8=0\)
\(\Leftrightarrow-6x^2+16x-3x+8=0\)

\(\Leftrightarrow2x\left(-3x+8\right)+\left(-3x+8\right)=0\)

\(\Leftrightarrow\left(-3x+8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+8=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-8\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{8}{3};\frac{-1}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
25 tháng 3 2020 lúc 13:45

\( 1)\dfrac{1}{{x - 1}} + \dfrac{{2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{4}{{{x^2} + x + 1}}\\ DK:x \ne 1\\ \Leftrightarrow \dfrac{{{x^2} + x + 1 + 2{x^2} - 5}}{{{x^3} - 1}} = \dfrac{{4\left( {x - 1} \right)}}{{{x^3} - 1}}\\ \Leftrightarrow {x^2} + x + 1 + 2{x^2} - 5 = 4x - 4\\ \Leftrightarrow 3{x^2} - 3x = 0\\ \Leftrightarrow 3x\left( {x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\left( {tm} \right)\\ x = 1\left( {ktm} \right) \end{array} \right.\\ 2)\dfrac{{x + 4}}{{2{x^2} - 5x + 2}} + \dfrac{{x + 1}}{{2{x^2} - 7x + 3}} = \dfrac{{2x + 5}}{{2{x^2} - 7x + 3}}\\ + DK:x \ne \dfrac{1}{2};x \ne 2;x \ne 3\\ \Leftrightarrow \dfrac{{x + 4}}{{\left( {2x - 1} \right)\left( {x - 2} \right)}} + \dfrac{{x + 1}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}} = \dfrac{{2x + 5}}{{\left( {x - 3} \right)\left( {2x - 1} \right)}}\\ \Leftrightarrow \left( {x + 4} \right)\left( {x - 3} \right) + \left( {x + 1} \right)\left( {x - 2} \right) = \left( {2x + 5} \right)\left( {x - 2} \right)\\ \Leftrightarrow {x^2} + x - 12 + {x^2} - x - 2 = 2{x^2} + x - 10\\ \Leftrightarrow x = - 4\left( {tm} \right)\\ 3)\dfrac{{x + 1}}{{x - 1}} - \dfrac{{x - 1}}{{x + 1}} = 3x\left( {1 - \dfrac{{x - 1}}{{x + 1}}} \right)\\ DK:x \ne \pm 1\\ \Leftrightarrow {\left( {x + 1} \right)^2} - {\left( {x - 1} \right)^2} = 3x\left( {x - 1} \right)\left( {x + 1 - x + 1} \right)\\ \Leftrightarrow {x^2} + 2x + 1 - {x^2} + 2x - 1 = 6x\left( {x - 1} \right)\\ \Leftrightarrow 4x = 6{x^2} - 6x\\ \Leftrightarrow 2x\left( {3x - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = \dfrac{5}{3} \end{array} \right.\left( {tm} \right) \)

Còn lại tương tự mà làm nhé!

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
NT
16 tháng 3 2023 lúc 22:10

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

Bình luận (0)
DH
Xem chi tiết
DH
Xem chi tiết
NT
9 tháng 3 2016 lúc 10:09

\(\frac{\left(x+1\right)^2-\frac{x}{2}}{4}=\frac{\left(2x-3\right)^2}{3}-\frac{\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}}{4}\)

\(\Rightarrow3\left[\left(x+1\right)^2-\frac{x}{2}\right]=4\left(2x-3\right)^2-3\left[\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}\right]\)

\(\Rightarrow3\left(x+1\right)^2-\frac{3x}{2}=4\left(2x-3\right)^2-\frac{3\left(x+1\right)}{4}+\frac{3x\left(3-2x\right)}{3}\)

\(\Rightarrow36\left(x+1\right)^2-18x=48\left(2x-3\right)^2-9\left(x+1\right)+12x\left(3-2x\right)\)

=> 36.(x2 + 2x + 1) - 18x = 48.(4x2 - 12x + 9) - 9(x + 1) + 12x(3 - 2x)

=> 36x2 + 72x + 36 - 18x - 192x2 + 576x - 432 + 9x + 9 - 36x + 24x2 = 0

=> -132x2 + 603x - 387 = 0

Có: \(\Delta=603^2-4.\left(-387\right)\left(-132\right)=159273\Rightarrow\sqrt{\Delta}=\sqrt{159273}\)

\(\Rightarrow x=\frac{-603+\sqrt{159273}}{-264}\)          hoặc          \(x=\frac{-603-\sqrt{159273}}{-264}\)

Vậy phương trình có 2 nghiệm : x = \(\left\{\frac{-603+\sqrt{159273}}{-264};\frac{-603-\sqrt{159273}}{-264}\right\}\)

Câu này không có nghiệm nguyên nha bạn.

Bình luận (0)
DH
9 tháng 3 2016 lúc 10:33

Cảm ơn bn nhìu

Bình luận (0)
NT
Xem chi tiết
NQ
5 tháng 5 2018 lúc 16:22
Sai đề câu a phải không
Bình luận (0)
NN
Xem chi tiết
TC
15 tháng 9 2017 lúc 15:19

Câu 1:
\(F=\frac{\frac{x^3-x}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^3-3x^2}{x-3}-\frac{2x^2+8}{x+2}}\left(ĐKXĐ:x\ne3;-2;-1\right)\)

\(F=\frac{\frac{x\left(x-1\right)\left(x+1\right)}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^2\left(x-3\right)}{x-3}-\frac{2x^2+8}{x+2}}\)

\(F=\frac{\frac{\left(x^2-x\right)\left(1+\frac{x}{2}\right)+2x-2}{1+\frac{x}{2}}}{\frac{x^2\left(x+2\right)-2x^2-8}{x+2}}\)

\(F=\frac{\frac{x^2+\frac{x^3}{2}-x-\frac{x^2}{2}+2x-2}{1+\frac{x}{2}}}{\frac{x^3-8}{x+2}}\)

\(F=\frac{\frac{x^2}{2}+\frac{x^3}{2}+x-2}{1+\frac{x}{2}}.\frac{x+2}{x^3-8}\)

Bình luận (0)
TC
15 tháng 9 2017 lúc 15:25

Câu 2:

\(G=\frac{\frac{x^4+1}{x^3-1}-x}{\frac{x}{x^2+x+1}-\frac{2}{x-1}}\left(ĐKXĐ:x\ne1\right)\)

\(G=\frac{\frac{x^4+1-x\left(x^3-1\right)}{x^3-1}}{\frac{x\left(x-1\right)-2\left(x^2+x+1\right)}{x^3-1}}\)

\(G=\frac{x+1}{x^3-1}:\frac{x^2-x-2x^2-2x-2}{x^3+1}\)

\(G=\frac{x+1}{-x^2-3x-2}\)

\(G=\frac{x+1}{-\left(x+2\right)\left(x+1\right)}\)

\(G=-\frac{1}{x+2}\)Tại x=2017 ta đc:\(G=-\frac{1}{2+2017}=-\frac{1}{2019}\)

Bình luận (0)
CD
Xem chi tiết