ba số nguyên dương x < y < z thỏa mãn 1/x + 1/y + 1/z = 1 là.....
Ba số nguyên dương x<y<z thỏa mãn 1/x+1/y+1/z=1. Tìm x;y;z
nhanh lin nha
Ba số nguyên dương x;y;z thỏa mãn x < y < z và tổng các nghịch đảo của chúng bằng 1 là (x;y;z)=(...)
Ba số nguyên dương x;y;z thỏa mãn x < y < z và tổng các nghịch đảo của chúng bằng 1 là ( x ; y ; z ) = ..............
Ba số nguyên dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Không mất tính tổng quát ta giả sử x\(\le y\le\) z
=> 1/x \(\ge\)1/y \(\ge\) 1/z
=> 1/x + 1/x + 1/x \(\ge\) 1/x + 1/y + 1/z = 1
=> 3/x \(\ge\) 3/3
=> x \(\le3\) (1)
Có: 1/x < 1 do 1/x + 1/y + 1/z = 1
=> x > 1 (2)
Từ (1) và (2) mà x nguyên dương => x = 2 hoặc x = 3
+ Nếu x = 2 thì 1/y + 1/z = 1 - 1/2 = 1/2
Có: 1/y + 1/y \(\ge\) 1/y + 1/z = 1/2
=> 2/y \(\ge\)2/4
=> y \(\le\) 4 (3)
Lại có: 1/y < 1/2 do 1/y + 1/z = 1/2
=> y > 2 (4)
Từ (3) và (4) mà y nguyên dương nên y = 3 hoặc y = 4
Giá trị tương ứng của z là 6; 4
Tương tự như vậy với x = 3 ta tìm được y = z = 3
Vậy ...
Ba số nguyên dương x;y;z thỏa mãn x < y < z và tổng các nghịch đảo của chúng bằng 1 là
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)