Những câu hỏi liên quan
HG
Xem chi tiết
NH
Xem chi tiết
NS
Xem chi tiết
LN
Xem chi tiết
SG
17 tháng 12 2016 lúc 13:10

Không mất tính tổng quát ta giả sử x\(\le y\le\) z

=> 1/x \(\ge\)1/y \(\ge\) 1/z

=> 1/x + 1/x + 1/x \(\ge\) 1/x + 1/y + 1/z = 1

=> 3/x \(\ge\) 3/3

=> x \(\le3\) (1)

Có: 1/x < 1 do 1/x + 1/y + 1/z = 1

=> x > 1 (2)

Từ (1) và (2) mà x nguyên dương => x = 2 hoặc x = 3

+ Nếu x = 2 thì 1/y + 1/z = 1 - 1/2 = 1/2

Có: 1/y + 1/y \(\ge\) 1/y + 1/z = 1/2

=> 2/y \(\ge\)2/4

=> y \(\le\) 4 (3)

Lại có: 1/y < 1/2 do 1/y + 1/z = 1/2

=> y > 2 (4)

Từ (3) và (4) mà y nguyên dương nên y = 3 hoặc y = 4

Giá trị tương ứng của z là 6; 4

Tương tự như vậy với x = 3 ta tìm được y = z = 3

Vậy ...

 

 

Bình luận (0)
NH
Xem chi tiết
NH
Xem chi tiết
ZZ
1 tháng 5 2020 lúc 22:57

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
TV
26 tháng 7 2024 lúc 16:10

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
MD
Xem chi tiết