Những câu hỏi liên quan
NL
Xem chi tiết
PP
Xem chi tiết
LC
19 tháng 10 2019 lúc 19:16

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
19 tháng 10 2019 lúc 19:08

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

Bình luận (0)
 Khách vãng lai đã xóa
LC
19 tháng 10 2019 lúc 19:11

b) Áp dụng định lý Bezout ta có:

\(M\left(x\right)\)chia hết cho \(\left(x+1\right)^2\)\(\Leftrightarrow M\left(-1\right)=0\)

                                                             \(\Leftrightarrow-1+1+1+a=0\)

                                                            \(\Leftrightarrow a=-1\)

Vậy a=-1 thì M(x) chia hết cho \(\left(x+1\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
H24
Xem chi tiết
HH
26 tháng 7 2017 lúc 14:34

1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)

Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)

thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

Vậy a=1;b=-6 thì ....

2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)

\(\Rightarrow M\ge-36\)

Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Bình luận (0)
SL
7 tháng 12 2019 lúc 19:04

1) Có A = x3 + 4x2 + ax + b

             = x3 + x2 - 2x + 3x+ 3x - 6 - x + ax + b + 6

             = x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)

             = (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)

Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2

thì (a - 1)x + (b + 6) = 0 với mọi x

\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)

2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)

              = [(x - 1)(x + 6)] [(x + 2)(x + 3)]

              = (x2 + 5x - 6)(x2 + 5x + 6)

              = (x2 + 5x)2 - 36

Thấy (x2 + 5x)2 ≥ 0 với mọi x

=> (x2 + 5x)2 - 36 ≥ -36 với mọi x

=> M ≥ -36 với mọi x

Dấu "=" xảy ra khi x2 + 5x = 0 

                    <=> x(x + 5) = 0

                    <=> x = 0 hoặc x + 5 = 0

                    <=> x = 0 hoặc x = -5

Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5

P/s: ko chắc

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
NP
Xem chi tiết
DA
Xem chi tiết
TN
Xem chi tiết
NT
21 tháng 12 2022 lúc 23:48

a: Khi x=-1 thì B=2*(-1)^2+1+1=4

b: Để A chia hết cho B thì 

\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)

=>a-3=0

=>a=3

c: Để B=1 thì 2x^2-x=0

=>x=0 hoặc x=1/2

Bình luận (0)
DH
Xem chi tiết