Chứng tỏ:
A=2^2011+2^2012+2^2013+2^2014+2^2015+2^2016vàAchiahếtcho21
Cho A =2^2011+2^2012+2^2013+^2014+2^2015+2^2016. Chứng tỏ A chia hết cho 21
A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016
= (22011 + 22012) + (22013 + 22014) + (22015 + 22016)
= 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)
= 3.22011 + 3.22011.22 + 3.22011.24
= 3.22011.(1 + 22 + 24)
= 3.22011.21 \(⋮\)21
=> A \(⋮\) 21
Ta có : A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016
= (22011 + 22012) + (22013 + 22014) + (22015 + 22016)
= 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)
= 3.22011 + 3.22011.22 + 3.22011.24
= 3.22011.(1 + 22 + 24)
= 3.22011.21 \(⋮\)21
=> A \(⋮\) 21 (đpcm)
Tính hợp lý (2011/2012+2012/2013+2013/2014+2014/2015)×(1/5-2/3:10/3)
1+2+3+...+120 và cho A= 2 mũ 2011+2 mũ 2012+ 2 mũ 2013+ 2 mũ 2014+ 2 mũ 2015.chứng tỏ A chia hết cho 31
Cho A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016 . Chứng tỏ A ⋮ 21
Mik sắp làm xong thì bấm nhầm làm mất bài, bây h làm lại thì hơi mất thời gian. Mik hướng dẫn bn làm nhé.
Chứng minh nó chia hết cho 3; cho 7 rồi CM đc nó chia hết cho 21.
Đối vs A chia hết cho 3, bn ghép hai số lại vs nhau và Cm đc. Còn đối vs A chia hết cho 7, bn ghép 3 số lại làm 1 nhóm là Cm đc. Nếu ko biết thì cố nghĩ đi nhé. Chúc bạn học tốt.
Cho A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\).Chứng tỏ rằng \(_⋮\)21
\(A=2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
\(A=2^{2011}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(A=2^{2011}.63=2^{2011}.3.21⋮21\)
tính (2016^2+2014^2+2012^2+......+4^2+2^2)-(2015^2+2013^2+2011^2+.....+3^2+1^2)
tìm hai chữ số tận cùng 2^2010+2^2011+2^2012+2^2013+2^2014+2^2015+2^2016
tìm 2 chữ số tận cùng của 2^2010+2^2011+2^2012+2^2013+2^2014+2^2015+2^2016
A= 22011+ 22012+22013+22014+22015+22016
chứng minh A chia hết cho 21?
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21