Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NL
23 tháng 8 2021 lúc 16:59

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

Bình luận (0)
PT
Xem chi tiết
TT
25 tháng 6 2016 lúc 14:15

\(\Leftrightarrow\hept{\begin{cases}6x-5y=0\\8y-4z=0\\2x+y-z-4=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}6x=5y\\2y=z\\2x+y-z=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=\frac{z}{12}\\2x+y-z=4\end{cases}}\)

\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}=\frac{z}{12}=\frac{2x+y-z}{10+6-12}=\frac{4}{4}=1\)

\(\Rightarrow x=5\)

      \(y=6\)

       \(z=12\)

Bình luận (0)
TL
Xem chi tiết
 .
Xem chi tiết
H24
28 tháng 8 2019 lúc 17:30

\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\)   \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)

\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)

Bình luận (0)
LC
28 tháng 8 2019 lúc 17:31

PhungHuyHoang

Làm sai mà rút ra được kiểu đấy

Bình luận (0)
NC
Xem chi tiết
NC
Xem chi tiết
DH
Xem chi tiết
DD
Xem chi tiết
HP
5 tháng 9 2021 lúc 10:18

\(x^2+2x+y^2-6y+4z^2-4z+11=0\)

\(\Leftrightarrow x^2+2x+1+y^2-6y+9+4z^2-4z+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\\2z-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
H24
5 tháng 9 2021 lúc 10:20

\(x^2+2x+y^2-6y+4z^2-4z+11=0\\ \Rightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\\ \Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

Vì \(\left(x+1\right)^2\ge0;\left(y-3\right)^2\ge0;\left(2z-1\right)^2\ge0\) mà \(\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\\\left(2z-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)