So sánh:A=2^2+2^2+2^3+2^4+...+2^100 và B=2^2016
So sánh:
a) \(C_6^2\) và \(C_6^4\)
b) \(C_4^2 + C_4^3\) và \(C_5^3\)
a) Sử dụng máy tính cầm tay, ta có:
\(\left. \begin{array}{l}C_6^2 = 15\\C_6^4 = 15\end{array} \right\} \Rightarrow C_6^2 = C_6^4\)
b) Sử dụng máy tính cầm tay, ta có:
\(\left. \begin{array}{l}C_4^2 + C_4^3 = 6 + 4 = 10\\C_5^3 = 10\end{array} \right\} \Rightarrow C_4^2 + C_4^3 = C_5^3\)
Tính và so sánh:
a) \({( - 3)^2}.{( - 3)^4}\) và \({( - 3)^6}\);
b) \(0,6{}^3:0,{6^2}\) và \(0,{6}\)
a)
\(\begin{array}{l}{( - 3)^2}.{( - 3)^4} = 9.81 = 729\\ {( - 3)^6} = ( - 3).( - 3).( - 3).( - 3).( - 3).( - 3)\\ = 9.9.9 = 729\end{array}\)
Vậy \({( - 3)^2}.{( - 3)^4}\) = \({( - 3)^{6}}\)
b)
\(\begin{array}{l}0,6{}^3:0,{6^2} = 0,216:0,36 = 0,6\end{array}\)
Vậy \(0,6{}^3:0,{6^2}\) = \(0,{6}\)
So sánh:
a) \({( - 2)^4} \cdot {( - 2)^5}\) và \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) và \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2}\) và \({\left[ {{{(0,3)}^2}} \right]^3}\);
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) và \({\left( {\frac{3}{2}} \right)^2}\).
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
(-2) ^4 . (-2) 65 và ( -2) ^ 12 : ( -2) ^3
=( -2) ^ 4+5 =(-2)^9 và (-2) ^12-3 = ( -2) ^9
vậy ( -2) ^9 = (-2) ^9
Nên (-2) ^4 .( -2) ^5 = ( -2) ^ 12 : ( -2) ^3
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
so sánh:a,3^99 và 11^21 b,Cho A=3^1+3^2+...+3^100.CMR:A chia hết cho 40
Bài 4: So sánh:
a,\(2^{333}\) và \(3^{222}\)
b,\(3^{2009}\)và\(9^{1005}\)
a: \(2^{333}=8^{111}< 9^{111}=3^{222}\)
So sánh:
a)\(2,4\) và \(2\frac{3}{5}\);
b) \( - 0,12\) và \( - \frac{2}{5}\)
c)\(\frac{{ - 2}}{7}\) và \( - 0,3\).
a)\(2,4 =\frac{24}{10}=\frac{{12}}{5}\) và \(2\frac{3}{5} = \frac{{13}}{5}\)
Ta có: \(\frac{{12}}{5} < \frac{{13}}{5} \Rightarrow 2,4 < 2\frac{3}{5}\).
b) \( - 0,12 = -\frac{12}{100}= - \frac{3}{{25}}\) và \( - \frac{2}{5} = - \frac{{10}}{{25}}\)
Ta có: -3 > -10 nên \( - \frac{3}{{25}} > - \frac{{10}}{{25}}\) nên \( - 0,12 > - \frac{2}{5}\).
c)\(\frac{{ - 2}}{7} = \frac{{ - 20}}{{70}}\) và \( - 0,3 = \frac{{ - 3}}{{10}} = \frac{{ - 21}}{{70}}\).
Do -20 > -21 nên \(\frac{{ - 20}}{{70}} > \frac{{ - 21}}{{70}}\) nên \(\frac{{ - 2}}{7} > - 0,3.\)
BÀI 1 SO SÁNH:A,11/12 VÀ 23/24 B,3/-20 VÀ -7/12 BÀI 2:2/5-3/4+/12 7/-8-5/12+1/6
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
So sánh:
a) \( - \frac{1}{3}\) và \(\frac{{ - 2}}{5}\)
b) 0,125 và 0,13
c) -0,6 và \(\frac{{ - 2}}{3}\)
a) Ta có:
\( - \frac{1}{3} = \frac{{ - 5}}{{15}};\frac{{ - 2}}{5} = \frac{{ - 6}}{{15}}\)
Vì -5 > -6 nên \(\frac{{ - 5}}{{15}} > \frac{{ - 6}}{{15}}\) hay \( - \frac{1}{3}\) > \(\frac{{ - 2}}{5}\)
b) 0,125 < 0,13 vì chữ số hàng phần trăm của 0,125 là 2 nhỏ hơn chữ số hàng phần trăm của 0,13 là 3
c) Ta có:
\(\begin{array}{l} - 0,6 = \frac{{ - 6}}{{10}} = \frac{{ - 3}}{5} = \frac{{ - 9}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 10}}{{15}}\end{array}\)
Vì -9 > -10 nên \(\frac{{ - 9}}{{15}} > \frac{{ - 10}}{{15}}\) hay - 0,6 > \(\frac{{ - 2}}{3}\)