Cho 2 số dương a và b. Chứng minh rằng
\((a+b)(\frac{1}{a}+\frac{1}{b})\ge4\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1 : Cho a, b \(\in\)N*. Chứng tỏ rằng:
a, \(\frac{a}{b}+\frac{b}{a}\ge2\);
b, \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\).
Bài 2 : Kí hiệu [x, y] là BCNN(x, y).
Cho a, b, c là ba số nguyên tố khác nhau đôi một.
Chứng minh rằng : \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\frac{1}{3}\).
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1
a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*
=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
b) tương tự ta có \(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)
\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
bài 2 chịu
Bài 2:
=> \(\frac{1}{\left[a.b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
Do a,b,c là các số nguyên tố khác nhau
=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
=> đpcm
1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)
2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)
3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:
Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản
b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)
4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)
5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên
6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản
7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)
8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)
9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)
10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau
Ô...mai..gót
Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K
Hãy đăng từng câu một
Ai đồng quan điểm
Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?
Nhưng ai biết câu nào thì làm câu đấy mình đâu bắt các bạn làm hết đâu
Bài 1: Cho a,b,c là các số dương. Chứng minh các bất đẳng thức:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)
( dùng cô -si )
bài 2( dùng định nghĩa )
1) Cho abc=1 và \(a^3>36\)Chứng minh rằng \(\frac{a^2}{3}+b^2+c^2>ab+bc+ca\)
2) Chứng minh rằng a) \(x^4+y^4+z^4+1\ge2x\left(xy^2-x+z+1\right)\)
b) Với mọi số thực a,b,c ta có: \(a^2+5b^2-4ab+2a-6b+3>0\)
c) \(a^2+2b^2-2ab+2a-4b+2\ge0\)
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)
Có đpcm
Ồ bài 2 a mới sửa đề ak:)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng:
\(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge\) 2
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
Tương tự,cộng theo vế và rút gọn =>đpcm
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt CÔ si
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
.............
Cho 3 số thực dương a,b,c. Chứng minh:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
Có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
<=> \(\left(\frac{a}{b}+1\right)+\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}\)
<=> \(\frac{a+b}{b}+\frac{b+c}{c}+\frac{c+a}{a}\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}\)
<=> \(\frac{a+b}{b}+\frac{b+c}{c}+\frac{c+a}{a}+\frac{4b}{a+b}+\frac{4c}{b+c}+\frac{4a}{c+a}\)
\(\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}+\frac{4b}{a+b}+\frac{4c}{b+c}+\frac{4a}{c+a}\)
<=> \(\left(\frac{a+b}{b}+\frac{4b}{a+b}\right)+\left(\frac{b+c}{c}+\frac{4c}{b+c}\right)+\left(\frac{c+a}{a}+\frac{4a}{c+a}\right)\)
\(\ge\left(\frac{4a}{a+b}+\frac{4b}{a+b}\right)+\left(\frac{4b}{b+c}+\frac{4c}{b+c}\right)+\left(\frac{4c}{c+a}+\frac{4a}{c+a}\right)\)
<=> \(\left(\frac{a+b}{b}+\frac{4b}{a+b}\right)+\left(\frac{b+c}{c}+\frac{4c}{b+c}\right)+\left(\frac{c+a}{a}+\frac{4a}{c+a}\right)\ge4+4+4\)
<=> \(\left(\frac{a+b}{b}+\frac{4b}{a+b}\right)+\left(\frac{b+c}{c}+\frac{4c}{b+c}\right)+\left(\frac{c+a}{a}+\frac{4a}{c+a}\right)\ge12\)(1)
Áp dụng Cô-si: (1) đúng.
Vậy Bất đẳng thức ban đầu đúng.
"=" <=> a = b = c.
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\right)\)
\(\Leftrightarrow\left(\frac{a}{b}+1\right)+\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
\(\Leftrightarrow\frac{a+b}{b}-\frac{4a}{a+b}+\frac{b+c}{c}-\frac{4b}{b+c}+\frac{c+a}{a}-\frac{4c}{c+a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{b\left(a+b\right)}+\frac{\left(b-c\right)^2}{c\left(b+c\right)}+\frac{\left(c-a\right)^2}{a\left(a+c\right)}\ge0\)
Luôn đúng vì a,b,c là các số dương
Dấu "=" xảy ra <=> a=b=c
Cho các số dương a,b,c. Chứng minh bất đẳng thức: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
1. Chứng minh rằng: \(\sqrt[3]{a^3+b^3+c^3}\le\sqrt{a^2+b^2+c^2}\)
2. Cho a,b,c là các số hữu tỉ. Chứng minh rằng: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\) là 1 số hữu tỉ
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
cho các số a, b, c sao cho 0 < a;b ;c <1/3 và \(a^3+b^3+c^3=\frac{3}{64}\)
Chứng minh rằng: \(\frac{1}{1-3a}+\frac{1}{1-3b}+\frac{1}{1-3c}\ge12\)
Ta chứng minh:
\(\frac{1}{1-3a}\ge256a^3\)
\(\Leftrightarrow\left(4x-1\right)^2\left(48x^2+8x+1\right)\ge0\)đúng
\(\Rightarrow VT\ge256a^3+256b^3+256c^3=\frac{256.3}{64}=12\)
Bài 1:Cho a,b,c là các số dương tùy ý. Chứng minh rằng: \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b+c}{2}\)
Bài 2: Cho a,b,c là các số dương. Chứng minh các bđt:
a) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}\)
b) \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\left(d>0\right)\)
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
Bài 2a làm bên h rồi nên chụp lại thôi!
(cần thì ib t gửi link cho)
Chú thích cho you hiểu: Ở bài 1:
Chúng ta biết rằng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\)
\(\Rightarrow\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{ab}{a+b}\) thế thôi!