Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
LC
24 tháng 10 2017 lúc 17:37

mk ko bt 123

Bình luận (0)
GN
24 tháng 10 2017 lúc 18:02

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{a^2+b^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)bài1

a) ta có \(\left(a-b\right)^2\ge0\) với mọi a,b\(\in\)N*

=> \(a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

b) tương tự ta có \(a^2+b^2\ge2ab\)

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)(do a,b\(\in\)N*)

\(\Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

bài 2 chịu

Bình luận (0)
HH
25 tháng 10 2017 lúc 6:35

Bài 2:

=> \(\frac{1}{\left[a.b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Do a,b,c là các số nguyên tố khác nhau

=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)

=> đpcm

Bình luận (0)
NH
Xem chi tiết
GA
14 tháng 4 2019 lúc 13:15

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

Bình luận (0)
TL
14 tháng 4 2019 lúc 13:42

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

Bình luận (0)
NH
14 tháng 4 2019 lúc 13:42

Nhưng ai biết câu nào thì làm câu đấy mình đâu bắt các bạn làm hết đâu

Bình luận (0)
LC
Xem chi tiết
H24
24 tháng 11 2019 lúc 13:21

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:27

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:44

Ồ bài 2 a mới sửa đề ak:)

Bình luận (0)
 Khách vãng lai đã xóa
NG
Xem chi tiết
H24
22 tháng 7 2019 lúc 12:27

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

Tương tự,cộng theo vế và rút gọn =>đpcm

Bình luận (0)

\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)

\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)

\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)

Áp dụng bđt CÔ si

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)

.............

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
NC
28 tháng 11 2019 lúc 11:13

Có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

<=> \(\left(\frac{a}{b}+1\right)+\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}\)

<=> \(\frac{a+b}{b}+\frac{b+c}{c}+\frac{c+a}{a}\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}\)

<=> \(\frac{a+b}{b}+\frac{b+c}{c}+\frac{c+a}{a}+\frac{4b}{a+b}+\frac{4c}{b+c}+\frac{4a}{c+a}\)

\(\ge\frac{4a}{a+b}+\frac{4b}{b+c}+\frac{4c}{c+a}+\frac{4b}{a+b}+\frac{4c}{b+c}+\frac{4a}{c+a}\)

<=> \(\left(\frac{a+b}{b}+\frac{4b}{a+b}\right)+\left(\frac{b+c}{c}+\frac{4c}{b+c}\right)+\left(\frac{c+a}{a}+\frac{4a}{c+a}\right)\)

\(\ge\left(\frac{4a}{a+b}+\frac{4b}{a+b}\right)+\left(\frac{4b}{b+c}+\frac{4c}{b+c}\right)+\left(\frac{4c}{c+a}+\frac{4a}{c+a}\right)\)

<=> \(\left(\frac{a+b}{b}+\frac{4b}{a+b}\right)+\left(\frac{b+c}{c}+\frac{4c}{b+c}\right)+\left(\frac{c+a}{a}+\frac{4a}{c+a}\right)\ge4+4+4\)

<=> \(\left(\frac{a+b}{b}+\frac{4b}{a+b}\right)+\left(\frac{b+c}{c}+\frac{4c}{b+c}\right)+\left(\frac{c+a}{a}+\frac{4a}{c+a}\right)\ge12\)(1)

Áp dụng Cô-si: (1) đúng.

Vậy Bất đẳng thức ban đầu đúng.

"=" <=> a = b = c.

Bình luận (0)
 Khách vãng lai đã xóa
TL
9 tháng 6 2020 lúc 20:56

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\right)\)

\(\Leftrightarrow\left(\frac{a}{b}+1\right)+\left(\frac{b}{c}+1\right)+\left(\frac{c}{a}+1\right)\ge4\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

\(\Leftrightarrow\frac{a+b}{b}-\frac{4a}{a+b}+\frac{b+c}{c}-\frac{4b}{b+c}+\frac{c+a}{a}-\frac{4c}{c+a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{b\left(a+b\right)}+\frac{\left(b-c\right)^2}{c\left(b+c\right)}+\frac{\left(c-a\right)^2}{a\left(a+c\right)}\ge0\)

Luôn đúng vì a,b,c là các số dương

Dấu "=" xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
TP
Xem chi tiết
CL
26 tháng 9 2016 lúc 23:47

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

Bình luận (0)
FM
Xem chi tiết
AN
17 tháng 10 2018 lúc 16:07

Ta chứng minh:

\(\frac{1}{1-3a}\ge256a^3\)

\(\Leftrightarrow\left(4x-1\right)^2\left(48x^2+8x+1\right)\ge0\)đúng

\(\Rightarrow VT\ge256a^3+256b^3+256c^3=\frac{256.3}{64}=12\) 

Bình luận (0)
LC
Xem chi tiết
H24
24 tháng 11 2019 lúc 13:29

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:36

Bài 2a làm bên h rồi nên chụp lại thôi!

 (cần thì ib t gửi link cho)

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 14:17

Chú thích cho you hiểu: Ở bài 1:

Chúng ta biết rằng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\)

\(\Rightarrow\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{ab}{a+b}\) thế thôi!

Bình luận (0)
 Khách vãng lai đã xóa