Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TB
Xem chi tiết
TT
2 tháng 8 2015 lúc 21:02

=> 2(a^2 + b^2 + c^2) = 2 ( ab + bc +ca) 

=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac 

=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac + a^2 = 0

=> ( a- b)^2 + ( b-  c)^2 + ( c -a )^2 = 0 

Vì ( a- b)^2>=0  (1)

   ( b - c)^2 >= 0 (2)

     ( c -a )^2 >= 0  (3)

Từ (1)(2) và (3) => ( a- b)^2 + ( b-  c)^2 + ( c -a )^2 = 0 khi 

a - b = 0 và b - c = 0 và c - a = 0 

=> a = b  và b = c  và c = a 

=> a= b =c 

VẬy là tam giác đều ĐÁp ấn C

Bình luận (0)
DM
2 tháng 8 2015 lúc 20:59

a^2+b^2+c^2=ab+bc+ca=>2(a^2+b^2+c^2)=2(ab+ac+ca)

2a^2+2b^2+2c^2-2ab-2ac-2bc=0.

a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2=0

(a-b)^2+(b-c)^2+(c-a)^2=0. => (a-b)^2=0 => a-b=0 => a=b

(b-c)^2=0 => b-c=0 => b=c

(c-a)^2=0 => c-a=0 =>c=a. Vậy a=b=c. Do đó tam giác đó là tam giác đều => C là đáp án đúng

 

Bình luận (0)
H24
Xem chi tiết
TQ
1 tháng 5 2015 lúc 15:58

tam giác đều b nhé

vì: 2a2+2b2+2c2=2ab+2ac+2bc

(a2+b2-2ab)+(a2+c2-2ac)+(b2+c2+2bc)=0

(a-b)2+(a-c)2+(b-c)2=0

a-b=0;a-c=0;b-c=0

=>a=b;a=c;b=c

vì a,b,c là 3 cạnh tam giác => a=b=c => tam giác đó là tam giác đều

Bình luận (0)
DL
Xem chi tiết
NH
Xem chi tiết
H24
20 tháng 12 2016 lúc 21:43

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

Bình luận (0)
NH
Xem chi tiết
BV
Xem chi tiết
ST
18 tháng 7 2018 lúc 10:05

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 10 2018 lúc 13:02

Đáp án A

Bình luận (0)
TN
Xem chi tiết
CA
Xem chi tiết
LN
26 tháng 2 2020 lúc 16:44

Câu 1: C

Câu 2:A

Câu 3:C

Câu 4 C

Câu 5: B

Câu 6 1Đ, 2Đ, 3Đ, 4S

Câu 7: a, Đ

Câu 10 A.

Các câu khác k rõ đề

Bình luận (0)
 Khách vãng lai đã xóa