Những câu hỏi liên quan
NT
Xem chi tiết
UK
1 tháng 3 2019 lúc 14:56

Đặt \(x^3=a,y^3=b,z^3=c\Rightarrow abc=1\)

\(P=\dfrac{a^3+b^3}{a^2+ab+b^2}+\dfrac{b^3+c^3}{b^2+bc+c^2}+\dfrac{c^3+a^3}{c^2+ca+a^2}\)

Ta chứng minh bổ đề sau

\(\dfrac{a^3+b^3}{a^2+ab+b^2}\ge\dfrac{a+b}{3}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge a^3+2ab^2+2a^2b+b^3\)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng. Sử dụng bổ đề ta được

\(P\ge\dfrac{a+b}{3}+\dfrac{b+c}{3}+\dfrac{c+a}{3}=\dfrac{2\left(a+b+c\right)}{3}\ge\dfrac{2.3\sqrt[3]{abc}}{3}=2\)

Bình luận (0)
NA
Xem chi tiết
AH
30 tháng 7 2017 lúc 0:24

Lời giải:

Biến đổi:

\(P=(x+y)(y+z)(x+z)+xyz=xy(x+y)+yz(y+z)+xz(z+x)+3xyz\)

\(\Leftrightarrow P=(x+y+z)(xy+yz+xz)\)

Với \(x+y+z\vdots 6\Rightarrow P\vdots 6(1)\)

Giả sử \(x,y,z\) đều là các số nguyên lẻ, khi đó \(x+y+z\) lẻ thì không thể chia hết cho $6$ (vô lý)

Do đó , phải tồn tại ít nhất một trong ba số \(x,y,z\) là số chẵn

\(\Rightarrow 3xyz\vdots 6(2)\)

Từ \((1),(2)\Rightarrow Q=P-3xyz\vdots 6\)

Ta có đpcm

Bình luận (0)
PN
Xem chi tiết
ND
Xem chi tiết
BL
Xem chi tiết
DA
25 tháng 9 2016 lúc 9:29

46452007

Bình luận (0)
TT
Xem chi tiết
NP
3 tháng 1 2021 lúc 20:12

cekkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

 

Bình luận (0)
AG
Xem chi tiết
NT
6 tháng 9 2017 lúc 14:21

áp dụng bđt cô si  ta có:

\(\left(x+y\right)+4\ge4\sqrt{x+y};\left(y+z\right)+4\ge4\sqrt{y+z};\left(z+x\right)+4\ge4\sqrt{z+x}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+12\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\)

\(\Rightarrow24\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\Rightarrow6\ge\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)

Bình luận (0)
LT
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết
H24
6 tháng 11 2021 lúc 21:07

A

Bình luận (0)
AC
6 tháng 11 2021 lúc 21:08

A

Bình luận (0)
DD
6 tháng 11 2021 lúc 21:09

thôi thôi thôi

chị lập tỉ lệ thức đi chị ơi

cũng đến Ạ với chị ý

Bình luận (0)