Những câu hỏi liên quan
LT
Xem chi tiết
HT
Xem chi tiết
PL
Xem chi tiết
FB
Xem chi tiết
LQ
Xem chi tiết
H24
11 tháng 2 2020 lúc 8:55

Đặt: \(x^{673}=a;y^{673}=b\Rightarrow a^3=b^3-b^2-b+2\)

\(+,b=0\Rightarrow a^3=-2\left(\text{vô lí}\right)\)

\(+,b=1\Rightarrow a=1\left(\text{thỏa mãn}\right)\)

\(+,b=-1\Rightarrow a^3=3\left(\text{vô lí vì a nguyên}\right)\)

\(+,b=-2\Rightarrow a^3=8\Leftrightarrow a=2\left(\text{loại vì x;y không nguyên}\right)\)

\(+,b\ne1;0;-1;-2\Rightarrow\left(b-1\right)^3< b^3-b^2-b+2< b^3\left(\text{nên loại}\right)\)

bạn tự kết luận

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
LP
22 tháng 3 2022 lúc 16:14

x thuộc 2019 ; 2020

y=2021

Bình luận (0)
Xem chi tiết
GW
11 tháng 9 2021 lúc 15:38

Bạn tham khảo hình ảnh :

undefined

Cre : lazi.vn

Hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
GF
11 tháng 9 2021 lúc 15:41

bạn tham khảo:

undefined

nguồn: lazi.vn

~HT~

Bình luận (0)
 Khách vãng lai đã xóa
XO
11 tháng 9 2021 lúc 15:43

Ta có |x| + 2019|y - 2020| = 1

=> |x| \(\le\)1

mà |x| \(\ge0\forall x\)

=> \(0\le\left|x\right|\le1\Rightarrow x\in\left\{0;1;-1\right\}\)

Thay x = 0 vào |x| + 2019|y - 2020| = 1

=> 0 + 2019|y - 2020| = 1

<=> \(\left|y-2020\right|=\frac{1}{2019}\)

=> \(\orbr{\begin{cases}y-2020=\frac{1}{2019}\\y-2020=-\frac{1}{2019}\end{cases}}\Leftrightarrow y=2020\pm\frac{1}{2019}\)(loại) 

Thay x = 1 vào phương trình 

=> 2019|y - 2020| = 0 

<=> |y - 2020| = 0

<=> y - 2020 = 0

<=> y = 2020

Khi x = -1 => 2019|y - 2020| = 0

<=> |y - 2020| = 0

=> y - 2020 = 0

=> y = 2020

Vậy cặp (x;y) thỏa là (1;2020)  ; (-1;2020) 

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
H24
Xem chi tiết
NL
23 tháng 3 2021 lúc 19:24

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

Bình luận (0)