Cmr: với mọi số tự nhiên n > 0, \(n^n-n⋮\left(n-1\right)^2\)
Cmr: với mọi số tự nhiên n > 0, \(\left(n^n-n^2+n-1\right)⋮\left(n-1\right)^2\)
Liệu có đúng không ta?
Câu hỏi của Ngọc Hạnh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
\(A=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n}\)
CMR: A là số tự nhiên với mọi n thuộc N.
BÀI 1: CMR với mọi số tự nhiên \(n\ge3\)
\(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{n^3}< \frac{1}{12}\)
BÀI 2: CMR với mọi số tự nhiên \(n\ge1\)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
BÀI 3: CMR với mọi số tự nhiên \(n\ge2\)
\(B=\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)....\left(1-\frac{1}{n\left(n+1\right)}\right)>\frac{1}{3}\)
M.N giúp mk với!!!!!
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
3.
Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)
Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)
cmr với mọi số tự nhiên n,n>1 thì
\(\sqrt{2}+\sqrt{3^2}+...+\sqrt{\left(n+1\right)^n}< \left(n+1\right)!\)
CMR với mọi n là số tự nhiên
số A=\(\frac{2^n+\left(-1\right)^{n+1}}{3}\) là số tự nhiên
CMR: \(A=\left(2^n-1\right)\left(2^n+1\right)\) chia hết cho 3 với mọi số tự nhiên n
\(CMR:\left(n+2017\right)\left(n+2018\right)⋮2\) với mọi số tự nhiên n.
CMR với mọi số tự nhiên n lớn hơn hoặc bằng 1 thì:
\(\left(1+\frac{1}{1\times3}\right)\left(1+\frac{1}{2\times4}\right)\left(1+\frac{1}{3\times5}\right).......\left(1+\frac{1}{n\times\left(n+2\right)}\right)< 2\)
Với mọi số tự nhiên \(n>1\) giải thích tại sao \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)
Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)