Những câu hỏi liên quan
H24
Xem chi tiết
TT
12 tháng 10 2020 lúc 19:18

Liệu có đúng không ta?

Câu hỏi của Ngọc Hạnh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NK
Xem chi tiết
TD
1 tháng 6 2018 lúc 15:33

vì bài dài quá nên mình làm từng bài 1 nhé

1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Do đó : 

\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)

Bình luận (0)
TD
1 tháng 6 2018 lúc 15:36

2.

Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Do đó : 

\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)

Bình luận (0)
TD
1 tháng 6 2018 lúc 15:38

3.

Nhận xét ; \(1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó : \(B=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{\left(n-1\right)n\left(n+2\right)}{n\left(n+1\right)}\)

Rút gọn được : B = \(\frac{1}{n}.\frac{n+2}{3}>\frac{1}{3}\)

Bình luận (0)
NP
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
PT
18 tháng 2 2018 lúc 22:03

Đồng dư thôi

Bình luận (0)
MC
Xem chi tiết
NA
Xem chi tiết
N5
Xem chi tiết
NV
17 tháng 5 2022 lúc 15:00

Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)

Bình luận (0)